240 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 |
210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 |
230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |
250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 |
270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |
280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 |
290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 |
240 is the number following 239 and preceding 241[1].
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120 and 240, making it a composite number.[2][3][4]
- 240 is an even number[5][6] .
- 240 is an unhappy number.[7][8]
- 240 is a pronic number.[9]
- 240 is abundant and superabundant.[10][11]
- Its prime factorization is 24 × 31 × 51.
- There were 240 pre-decimal pence in a pound sterling.
- It is also the kissing number of the E8 lattice.
- CompactStar (known as Nirvana Supermind) calls this number as Zero-quattuorvicenol, using quick array notation.[12]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 3 ↑ 5 | ||
Scientific notation | 2.4 x 102 | 2.401 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(3)\) | \(g_{\omega^{\omega}}(4)\) | |
Copy notation | 2[3] | 3[3] | |
Chained arrow notation | 3 → 5 | ||
Bowers' Exploding Array Function/Bird's array notation | {3,5} | ||
Fast-growing hierarchy | f2(5) | f2(6) | |
Hardy hierarchy | Hω(120) | Hω(120) | |
Middle-growing hierarchy | m(ω,7) | m(ω,8) | |
Hyper-E notation | E2.3802 | ||
Hyper-E notation (non-10 base) | \(E[3]5\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 3{1}5 | ||
Steinhaus-Moser Notation | 3[3] | 4[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.3) | H(-0.2) | |
Bashicu matrix system with respect to version 4 | (0)[15] | (0)[16] | |
m(n) map | m(1)(3) | m(1)(4) | |
s(n) map | \(s(1)(\lambda x . x+1)(119)\) | \(s(1)(\lambda x . x+1)(120)\) |
Sources[]
- ↑ Wolfram Alpha 240
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 240 composite?
- ↑ Wolfram Alpha 240's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 240 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A002378 - Pronic numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers
- ↑ NirvanaSupermind, Numbers from quick array notation, retrieved (UTC) 2021/02/26