256 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 |
210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 |
230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |
250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 |
270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |
280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 |
290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 |
256 (two hundred fifty-six) is a positive integer equal to \(2^{8} = 2^{2^3}\).
It is found commonly in computer science, being the the number of different values expressible in 8 bits (a byte). For that reason internally stored values in a game which are not programmed to exceed a byte encounter an overflow and may either loop back to a value of 0 or glitch an aspect of the game. One instance of this is in the classic arcade game Pac-Man, which glitches out after level 255.[1][2]
This number is equal to \(2\downarrow\downarrow4\) in down-arrow notation.
Alistair gave "fzfour", which equals this number, as an example after introducing his fz- prefix to his children, since it is equal to 44.[3][4][5]
Aarex Tiaokhiao calls this number hexadecimal-booiol and maser.[6]
IsTakenIsTaken calls this number biudutremix, and it is equal to 2↑↓↑3 in Mixed arrow notation.[7]
BlankEntity calls this number jói sá fjórði, and it's the 42nd number of Celtchar of New World. [8]
Oganso uses the name byte for this number.[9]
Properties[]
- Its factors are 1, 2, 4, 8, 16, 32, 64, 128 and 256, making it a composite number.[10][11][12]
- 256 is an even number[13][14].
- 256 is an unhappy number.[15][16]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 16 ↑ 2 | ||
Scientific notation | \(2.56\times10^2\) | \(2.561\times10^2\) | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 2[3] | 3[3] | |
Chained arrow notation | 16 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {16,2} | ||
Fast-growing hierarchy | f2(5) | f2(6) | |
Hardy hierarchy | Hω(128) | Hω(128) | |
Middle-growing hierarchy | m(ω,8) | m(ω,8) | |
Hyper-E notation | E2.4082 | ||
Hyper-E notation (non-10 base) | \(E[16]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 16{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.2) | H(-0.1) | |
Bashicu matrix system with respect to version 4 | (0)[16] | (0)[16] |
Sources[]
- ↑ https://www.youtube.com/watch?v=umYvFdU54Po
- ↑ https://en.wikipedia.org/wiki/Pac-Man#Kill_screen
- ↑ Cockburn, Alistair. A fuga really big numbers (archived 2016-04-11).
- ↑ Saibian, Sbiis. The Fz, The Fuga & The Megafuga. Retrieved 2021-07-22.
- ↑ Cookiefonster. 2.5A. Googological prefixes and suffixes - Pointless Large Number Stuff. Retrieved 2021-07-22.
- ↑ Part 1 (LAN) - Aarex Googology
- ↑ https://sites.google.com/view/wlargenumbers/mixed-arrow-notation Retrieved 1/19/2021 6:23 PM EST
- ↑ BlankEntity's Googology - Celtchar of New World (Retrieved 31 July, 2022)
- ↑ binary googology stage 1 (retrieved 2024-12-08)
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 256 composite?
- ↑ Wolfram Alpha 256's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 256 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A016754 - Centered octagonal numbers
- ↑ OEIS A005100 - Deficient numbers
See also[]
Bignum Bakeoff contestants: pete-3.c · pete-9.c · pete-8.c · harper.c · ioannis.c · chan-2.c · chan-3.c · pete-4.c · chan.c · pete-5.c · pete-6.c · pete-7.c · marxen.c · loader.c
Channel systems: lossy channel system · priority channel system
Concepts: Recursion
Gar-: garone · gartwo · garthree · garfour · garfive · garsix · garseven · gareight · garnine · garten · garhundred · garmillion · gargoogol · gareceton · gartrialogue · gargoogolplex · gargiggol
Fz-: fzone · fztwo · fzthree · fzfour · fzfive · fzsix · fzseven · fzeight · fznine · fzten · fztwenty · fzthirty · fzhundred · fzthousand · fzmillion · fzgoogol · fzmilliplexion · fzgoogolplex · fzgargoogolplex · fzgiggol
Fuga-: fugaone · fugatwo · fugathree · fugafour · fugafive · fugasix · fugaseven · fugaeight · fuganine · fugaten · fugahundred · fugagoogol · fugagoogolplex · fugagargoogolplex · fugagiggol
Megafuga-: megafugaone · megafugatwo · megafugathree · megafugafour · megafugafive · megafugasix · megafugaseven · megafugaeight · megafuganine · megafugaten · megafugahundred · megafugagoogol · megafugagoogolplex · megafugagargoogolplex · megafugagargantugoogolplex · megafugagrangol
Extensions:
Booga-:: boogaone · boogatwo · boogathree · boogafour · boogafive · boogasix · boogaten · boogahundred · boogagoogol · boogagoogolplex
Gag-:: gagone · gagtwo · gagthree · gagfour · gagfive · gagsix · gagseven · gageight · gagnine · gagten · gaggoogol · gaggoogolplex
Mega series: Mega · A-ooga (Megision) · Megisiduon · Megisitruon · Megisiquadruon
Grand Mega series: Grand Mega · Grand Megision · Grand Megisiduon (A-oogra) · Grand Megisitruon · Grand Megisiquadruon
Great Mega series: Great Mega · Great Megision · Great Megisiduon · Great Megisitruon (A-oogrea) · Great Megisiquadruon
Gong Mega series: Gong Mega · Gong Megision · Gong Megisiduon · Gong Megisitruon · Gong Megisiquadruon (A-oogonga)
Hexomega series: Hexomega · Hexomegision · Hexomegisiduon · Hexomegisitruon · Hexomegisiquadruon · Hexomegisiquinton (A-oohexa)
Heptomega series: Heptomega · A-oohepta (Heptomegisisexton) · Octomega · A-oocta · Nonomega · A-ooennea
Megistron series: Megiston (Megistron) · Megisiplextron · Megisiduplextron · Megisitriplextron · Megisiquadruplextron · A-oomega (Megisienneaplextron)
A-ooga series: A-ooga · Betomega (A-oogatiplex) · A-oogatiduplex · A-oogatitriplex · A-oogatiquadruplex · A-oogatiquintiplex
A-oogra series: A-oogra · A-oogratiplex · Betogiga (A-oogratiduplex) · A-oogratitriplex · A-oogratiquadruplex · A-oogratiquintiplex
A-oogrea series: A-oogrea · A-oogreatiplex · A-oogreatiduplex · Betotera (A-oogreatitriplex) · A-oogreatiquadruplex · A-oogreatiquintiplex
A-oogonga series: A-oogonga · A-oogongatiplex · A-oogongatiduplex · A-oogongatitriplex · Betopeta (A-oogongatiquadruplex) · A-oogongatiquintiplex
A-oohexa series: A-oohexa · A-oohexatiplex · A-oohexatiduplex · A-oohexatitriplex · A-oohexatiquadruplex · Betoexa (A-oohexatiquintiplex)
A-oohepta series: A-oohepta · Betozetta (A-ooheptatisextiplex) · A-oocta · Betoyotta · A-ooennea · Betoxota
A-oomega series: A-oomega · A-oomegatiplex · A-oomegatiduplex · A-oomegatitriplex · A-oomegatiquadruplex · Betodaka (A-oomegatienneaplex)
Betomega series: Betomega · Flexinega (Brantomega) · Breatomega · Bigiatomega · Biquadriatomega · Biquintiatomega
Betogiga series: Betogiga · Brantogiga · Flexitria (Breatogiga) · Bigiatogiga · Biquadriatogiga · Biquintiatogiga
Betotera series: Betotera · Brantotera · Breatotera · Flexitera (Bigiatotera) · Biquadriatotera · Biquintiatotera
Betopeta series: Betopeta · Brantopeta · Breatopeta · Bigatopeta · Flexipera (Biquadriatopeta) · Biquintiatopeta
Betoexa series: Betoexa · Brantoexa · Breatoexa · Bigatoexa · Biquadriatoexa · Flexiexa (Biquintiatoexa)
Betozetta series: Betozetta · Flexizetta · Betoyotta · Betoxota · Betodaka
Flexinega series: Flexinega · Oktia (Fainega) · Funnynega · Ftetrinega · Fpentinega · Fhexinega
Flexitria series: Flexitria · Faitria · Oktria (Funnytria) · Ftetritria · Fpentitria · Fhexitria
Flexitera series: Flexitera · Faitera · Funnytera · Oktetra (Ftetritera)
Moser series: Moser · Grand Moser · Great Moser · Gong Moser
Maser series: Maser · Miser (Killaser) · Meser · Muser