| 2800 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 |
| 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | 2816 | 2817 | 2818 | 2819 |
| 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 |
| 2830 | 2831 | 2832 | 2833 | 2834 | 2835 | 2836 | 2837 | 2838 | 2839 |
| 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846 | 2847 | 2848 | 2849 |
| 2850 | 2851 | 2852 | 2853 | 2854 | 2855 | 2856 | 2857 | 2858 | 2859 |
| 2860 | 2861 | 2862 | 2863 | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 |
| 2870 | 2871 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 |
| 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | 2888 | 2889 |
| 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | 2896 | 2897 | 2898 | 2899 |
2800 is the number following 2799 and preceding 2801.
Properties[]
- Its factors are 1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 25, 28, 35, 40, 50, 56, 70, 80, 100, 112, 140, 175, 200, 280, 350, 400, 560, 700, 1400 and 2800, making it a composite number.[1][2][3]
- 2800 is an even number[4][5] .
- 2800 is a happy number.[6][7]
- 2800 is abundant.[8]
- Its prime factorization is 24 × 52 × 71.
- 2800 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 53 ↑ 2 | ||
| Scientific notation | 2.8 x 103 | 2.801 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 27[2] | 28[2] | |
| Chained arrow notation | 53 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {53,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1400) | Hω(1400) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.4472 | ||
| Hyper-E notation (non-10 base) | \(E[53]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 53{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[52] | (0)[53] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1399)\) | \(s(1)(\lambda x . x+1)(1400)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 2800 composite?
- ↑ Wolfram Alpha 2800's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 2800 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers