| 2808 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 |
| 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | 2816 | 2817 | 2818 | 2819 |
| 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 |
| 2830 | 2831 | 2832 | 2833 | 2834 | 2835 | 2836 | 2837 | 2838 | 2839 |
| 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846 | 2847 | 2848 | 2849 |
| 2850 | 2851 | 2852 | 2853 | 2854 | 2855 | 2856 | 2857 | 2858 | 2859 |
| 2860 | 2861 | 2862 | 2863 | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 |
| 2870 | 2871 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 |
| 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | 2888 | 2889 |
| 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | 2896 | 2897 | 2898 | 2899 |
2808 is the number following 2807 and preceding 2809.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 27, 36, 39, 52, 54, 72, 78, 104, 108, 117, 156, 216, 234, 312, 351, 468, 702, 936, 1404 and 2808, making it a composite number.[1][2][3]
- 2808 is an even number[4][5] .
- 2808 is an unhappy number.[6][7]
- 2808 is abundant.[8]
- Its prime factorization is 23 × 33 × 131.
- 2808 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 53 ↑ 2 | ||
| Scientific notation | 2.808 x 103 | 2.809 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 27[2] | 28[2] | |
| Chained arrow notation | 53 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {53,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1404) | Hω(1404) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.4484 | ||
| Hyper-E notation (non-10 base) | \(E[53]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 53{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[52] | (0)[53] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1403)\) | \(s(1)(\lambda x . x+1)(1404)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 2808 composite?
- ↑ Wolfram Alpha 2808's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 2808 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers