| 2856 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 2800 | 2801 | 2802 | 2803 | 2804 | 2805 | 2806 | 2807 | 2808 | 2809 |
| 2810 | 2811 | 2812 | 2813 | 2814 | 2815 | 2816 | 2817 | 2818 | 2819 |
| 2820 | 2821 | 2822 | 2823 | 2824 | 2825 | 2826 | 2827 | 2828 | 2829 |
| 2830 | 2831 | 2832 | 2833 | 2834 | 2835 | 2836 | 2837 | 2838 | 2839 |
| 2840 | 2841 | 2842 | 2843 | 2844 | 2845 | 2846 | 2847 | 2848 | 2849 |
| 2850 | 2851 | 2852 | 2853 | 2854 | 2855 | 2856 | 2857 | 2858 | 2859 |
| 2860 | 2861 | 2862 | 2863 | 2864 | 2865 | 2866 | 2867 | 2868 | 2869 |
| 2870 | 2871 | 2872 | 2873 | 2874 | 2875 | 2876 | 2877 | 2878 | 2879 |
| 2880 | 2881 | 2882 | 2883 | 2884 | 2885 | 2886 | 2887 | 2888 | 2889 |
| 2890 | 2891 | 2892 | 2893 | 2894 | 2895 | 2896 | 2897 | 2898 | 2899 |
2856 is the number following 2855 and preceding 2857.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 12, 14, 17, 21, 24, 28, 34, 42, 51, 56, 68, 84, 102, 119, 136, 168, 204, 238, 357, 408, 476, 714, 952, 1428 and 2856, making it a composite number.[1][2][3]
- 2856 is an even number[4][5] .
- 2856 is a happy number.[6][7]
- 2856 is abundant.[8]
- Its prime factorization is 23 × 31 × 71 × 171.
- 2856 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 53 ↑ 2 | ||
| Scientific notation | 2.856 x 103 | 2.857 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
| Copy notation | 28[2] | 29[2] | |
| Chained arrow notation | 53 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {53,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1428) | Hω(1428) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.4558 | ||
| Hyper-E notation (non-10 base) | \(E[53]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 53{1}2 | ||
| Steinhaus-Moser Notation | 4[3] | 5[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[53] | (0)[54] | |
| m(n) map | m(1)(4) | m(1)(5) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1427)\) | \(s(1)(\lambda x . x+1)(1428)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 2856 composite?
- ↑ Wolfram Alpha 2856's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 2856 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers