3056 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
3000 | 3001 | 3002 | 3003 | 3004 | 3005 | 3006 | 3007 | 3008 | 3009 |
3010 | 3011 | 3012 | 3013 | 3014 | 3015 | 3016 | 3017 | 3018 | 3019 |
3020 | 3021 | 3022 | 3023 | 3024 | 3025 | 3026 | 3027 | 3028 | 3029 |
3030 | 3031 | 3032 | 3033 | 3034 | 3035 | 3036 | 3037 | 3038 | 3039 |
3040 | 3041 | 3042 | 3043 | 3044 | 3045 | 3046 | 3047 | 3048 | 3049 |
3050 | 3051 | 3052 | 3053 | 3054 | 3055 | 3056 | 3057 | 3058 | 3059 |
3060 | 3061 | 3062 | 3063 | 3064 | 3065 | 3066 | 3067 | 3068 | 3069 |
3070 | 3071 | 3072 | 3073 | 3074 | 3075 | 3076 | 3077 | 3078 | 3079 |
3080 | 3081 | 3082 | 3083 | 3084 | 3085 | 3086 | 3087 | 3088 | 3089 |
3090 | 3091 | 3092 | 3093 | 3094 | 3095 | 3096 | 3097 | 3098 | 3099 |
3056 is the number following 3055 and preceding 3057.
Properties[]
- Its factors are 1, 2, 4, 8, 16, 191, 382, 764, 1528 and 3056, making it a composite number.[1][2][3]
- 3056 is an even number[4][5] .
- 3056 is a happy number.[6][7]
- 3056 is deficient.[8]
- Its prime factorization is 24 × 1911.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 55 ↑ 2 | ||
Scientific notation | 3.056 x 103 | 3.057 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 30[2] | 31[2] | |
Chained arrow notation | 55 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {55,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(1528) | Hω(1528) | |
Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
Hyper-E notation | E3.4852 | ||
Hyper-E notation (non-10 base) | \(E[55]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 55{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[55] | (0)[56] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(1527)\) | \(s(1)(\lambda x . x+1)(1528)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3056 composite?
- ↑ Wolfram Alpha 3056's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3056 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005100 - Deficient numbers