3138 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
3100 | 3101 | 3102 | 3103 | 3104 | 3105 | 3106 | 3107 | 3108 | 3109 |
3110 | 3111 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 |
3120 | 3121 | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | 3128 | 3129 |
3130 | 3131 | 3132 | 3133 | 3134 | 3135 | 3136 | 3137 | 3138 | 3139 |
3140 | 3141 | 3142 | 3143 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 |
3150 | 3151 | 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 |
3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 3167 | 3168 | 3169 |
3170 | 3171 | 3172 | 3173 | 3174 | 3175 | 3176 | 3177 | 3178 | 3179 |
3180 | 3181 | 3182 | 3183 | 3184 | 3185 | 3186 | 3187 | 3188 | 3189 |
3190 | 3191 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 3199 |
3138 is the number following 3137 and preceding 3139.
Properties[]
- Its factors are 1, 2, 3, 6, 523, 1046, 1569 and 3138, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 3138 is an even number[5][6] .
- 3138 is an unhappy number.[7][8]
- 3138 is abundant.[9]
- Its prime factorization is 21 × 31 × 5231.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 56 ↑ 2 | ||
Scientific notation | 3.138 x 103 | 3.139 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 31[2] | 32[2] | |
Chained arrow notation | 56 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {56,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(1569) | Hω(1569) | |
Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
Hyper-E notation | E3.4967 | ||
Hyper-E notation (non-10 base) | \(E[56]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 56{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[56] | (0)[57] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(1568)\) | \(s(1)(\lambda x . x+1)(1569)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3138 composite?
- ↑ Wolfram Alpha 3138's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3138 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers