3150 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
3100 | 3101 | 3102 | 3103 | 3104 | 3105 | 3106 | 3107 | 3108 | 3109 |
3110 | 3111 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 |
3120 | 3121 | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | 3128 | 3129 |
3130 | 3131 | 3132 | 3133 | 3134 | 3135 | 3136 | 3137 | 3138 | 3139 |
3140 | 3141 | 3142 | 3143 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 |
3150 | 3151 | 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 |
3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 3167 | 3168 | 3169 |
3170 | 3171 | 3172 | 3173 | 3174 | 3175 | 3176 | 3177 | 3178 | 3179 |
3180 | 3181 | 3182 | 3183 | 3184 | 3185 | 3186 | 3187 | 3188 | 3189 |
3190 | 3191 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 3199 |
3150 is the number following 3149 and preceding 3151.
Properties[]
- Its factors are 1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 25, 30, 35, 42, 45, 50, 63, 70, 75, 90, 105, 126, 150, 175, 210, 225, 315, 350, 450, 525, 630, 1050, 1575 and 3150, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 3150 is an even number[5][6] .
- 3150 is an unhappy number.[7][8]
- 3150 is abundant.[9]
- Its prime factorization is 21 × 32 × 52 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 56 ↑ 2 | ||
Scientific notation | 3.15 x 103 | 3.151 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 31[2] | 32[2] | |
Chained arrow notation | 56 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {56,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(1575) | Hω(1575) | |
Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
Hyper-E notation | E3.4983 | ||
Hyper-E notation (non-10 base) | \(E[56]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 56{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[56] | (0)[57] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(1574)\) | \(s(1)(\lambda x . x+1)(1575)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3150 composite?
- ↑ Wolfram Alpha 3150's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3150 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers