3168 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
3100 | 3101 | 3102 | 3103 | 3104 | 3105 | 3106 | 3107 | 3108 | 3109 |
3110 | 3111 | 3112 | 3113 | 3114 | 3115 | 3116 | 3117 | 3118 | 3119 |
3120 | 3121 | 3122 | 3123 | 3124 | 3125 | 3126 | 3127 | 3128 | 3129 |
3130 | 3131 | 3132 | 3133 | 3134 | 3135 | 3136 | 3137 | 3138 | 3139 |
3140 | 3141 | 3142 | 3143 | 3144 | 3145 | 3146 | 3147 | 3148 | 3149 |
3150 | 3151 | 3152 | 3153 | 3154 | 3155 | 3156 | 3157 | 3158 | 3159 |
3160 | 3161 | 3162 | 3163 | 3164 | 3165 | 3166 | 3167 | 3168 | 3169 |
3170 | 3171 | 3172 | 3173 | 3174 | 3175 | 3176 | 3177 | 3178 | 3179 |
3180 | 3181 | 3182 | 3183 | 3184 | 3185 | 3186 | 3187 | 3188 | 3189 |
3190 | 3191 | 3192 | 3193 | 3194 | 3195 | 3196 | 3197 | 3198 | 3199 |
3168 is the number following 3167 and preceding 3169.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 9, 11, 12, 16, 18, 22, 24, 32, 33, 36, 44, 48, 66, 72, 88, 96, 99, 132, 144, 176, 198, 264, 288, 352, 396, 528, 792, 1056, 1584 and 3168, making it a composite number.[1][2][3]
- 3168 is an even number[4][5] .
- 3168 is an unhappy number.[6][7]
- 3168 is abundant.[8]
- Its prime factorization is 25 × 32 × 111.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 56 ↑ 2 | ||
Scientific notation | 3.168 x 103 | 3.169 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 31[2] | 32[2] | |
Chained arrow notation | 56 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {56,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(1584) | Hω(1584) | |
Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
Hyper-E notation | E3.5008 | ||
Hyper-E notation (non-10 base) | \(E[56]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 56{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[56] | (0)[57] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(1583)\) | \(s(1)(\lambda x . x+1)(1584)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3168 composite?
- ↑ Wolfram Alpha 3168's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3168 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers