3360 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
3300 | 3301 | 3302 | 3303 | 3304 | 3305 | 3306 | 3307 | 3308 | 3309 |
3310 | 3311 | 3312 | 3313 | 3314 | 3315 | 3316 | 3317 | 3318 | 3319 |
3320 | 3321 | 3322 | 3323 | 3324 | 3325 | 3326 | 3327 | 3328 | 3329 |
3330 | 3331 | 3332 | 3333 | 3334 | 3335 | 3336 | 3337 | 3338 | 3339 |
3340 | 3341 | 3342 | 3343 | 3344 | 3345 | 3346 | 3347 | 3348 | 3349 |
3350 | 3351 | 3352 | 3353 | 3354 | 3355 | 3356 | 3357 | 3358 | 3359 |
3360 | 3361 | 3362 | 3363 | 3364 | 3365 | 3366 | 3367 | 3368 | 3369 |
3370 | 3371 | 3372 | 3373 | 3374 | 3375 | 3376 | 3377 | 3378 | 3379 |
3380 | 3381 | 3382 | 3383 | 3384 | 3385 | 3386 | 3387 | 3388 | 3389 |
3390 | 3391 | 3392 | 3393 | 3394 | 3395 | 3396 | 3397 | 3398 | 3399 |
3360 is the number following 3359 and preceding 3361.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 20, 21, 24, 28, 30, 32, 35, 40, 42, 48, 56, 60, 70, 80, 84, 96, 105, 112, 120, 140, 160, 168, 210, 224, 240, 280, 336, 420, 480, 560, 672, 840, 1120, 1680 and 3360, making it a composite number.[1][2][3]
- 3360 is an even number[4][5] .
- 3360 is an unhappy number.[6][7]
- 3360 is abundant.[8]
- Its prime factorization is 25 × 31 × 51 × 71.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 58 ↑ 2 | ||
Scientific notation | 3.36 x 103 | 3.361 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 3[4] | 34[2] | |
Chained arrow notation | 58 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {58,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(1680) | Hω(1680) | |
Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
Hyper-E notation | E3.5263 | ||
Hyper-E notation (non-10 base) | \(E[58]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 58{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.1) | H(0.2) | |
Bashicu matrix system with respect to version 4 | (0)[57] | (0)[58] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(1679)\) | \(s(1)(\lambda x . x+1)(1680)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3360 composite?
- ↑ Wolfram Alpha 3360's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3360 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers