338 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 |
310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 |
320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 |
330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 |
340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 |
350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 |
360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 |
370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 |
380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 |
390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 |
338 is the number following 337 and preceding 339[1].
Properties[]
- Its factors are 1, 2, 13, 26, 169 and 338, making it a composite number.[2][3][4] It is also a cubefree number.[5]
- 338 is an even number[6][7] .
- 338 is a happy number.[8][9]
- 338 is deficient.[10]
- Its prime factorization is 21 × 132.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 7 ↑ 3 | ||
Scientific notation | 3.38 x 102 | 3.381 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 3[3] | 4[3] | |
Chained arrow notation | 7 → 3 | ||
Bowers' Exploding Array Function/Bird's array notation | {7,3} | ||
Fast-growing hierarchy | f2(5) | f2(6) | |
Hardy hierarchy | Hω(169) | Hω(169) | |
Middle-growing hierarchy | m(ω,8) | m(ω,9) | |
Hyper-E notation | E2.5289 | ||
Hyper-E notation (non-10 base) | \(E[7]3\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 7{1}3 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.2) | H(-0.1) | |
Bashicu matrix system with respect to version 4 | (0)[18] | (0)[19] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(168)\) | \(s(1)(\lambda x . x+1)(169)\) |
Sources[]
- ↑ Wolfram Alpha 338
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 338 composite?
- ↑ Wolfram Alpha 338's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 338 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005100 - Deficient numbers