| 3528 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 3500 | 3501 | 3502 | 3503 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 |
| 3510 | 3511 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 |
| 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | 3528 | 3529 |
| 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | 3536 | 3537 | 3538 | 3539 |
| 3540 | 3541 | 3542 | 3543 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 |
| 3550 | 3551 | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 |
| 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | 3568 | 3569 |
| 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 |
| 3580 | 3581 | 3582 | 3583 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 |
| 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 |
3528 is the number following 3527 and preceding 3529.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 49, 56, 63, 72, 84, 98, 126, 147, 168, 196, 252, 294, 392, 441, 504, 588, 882, 1176, 1764 and 3528, making it a composite number.[1][2][3]
- 3528 is an even number[4][5] .
- 3528 is an unhappy number.[6][7]
- 3528 is abundant.[8]
- Its prime factorization is 23 × 32 × 72.
- 3528 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 59 ↑ 2 | ||
| Scientific notation | 3.528 x 103 | 3.529 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
| Copy notation | 34[2] | 35[2] | |
| Chained arrow notation | 59 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {59,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1764) | Hω(1764) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.5475 | ||
| Hyper-E notation (non-10 base) | \(E[59]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 59{1}2 | ||
| Steinhaus-Moser Notation | 5[3] | 6[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[59] | (0)[60] | |
| m(n) map | m(1)(5) | m(1)(6) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1763)\) | \(s(1)(\lambda x . x+1)(1764)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3528 composite?
- ↑ Wolfram Alpha 3528's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3528 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers