| 3552 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 3500 | 3501 | 3502 | 3503 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 |
| 3510 | 3511 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 |
| 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | 3528 | 3529 |
| 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | 3536 | 3537 | 3538 | 3539 |
| 3540 | 3541 | 3542 | 3543 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 |
| 3550 | 3551 | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 |
| 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | 3568 | 3569 |
| 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 |
| 3580 | 3581 | 3582 | 3583 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 |
| 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 |
3552 is the number following 3551 and preceding 3553.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 37, 48, 74, 96, 111, 148, 222, 296, 444, 592, 888, 1184, 1776 and 3552, making it a composite number.[1][2][3]
- 3552 is an even number[4][5] .
- 3552 is an unhappy number.[6][7]
- 3552 is abundant.[8]
- Its prime factorization is 25 × 31 × 371.
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 60 ↑ 2 | ||
| Scientific notation | 3.552 x 103 | 3.553 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
| Copy notation | 35[2] | 36[2] | |
| Chained arrow notation | 60 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {60,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1776) | Hω(1776) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.5505 | ||
| Hyper-E notation (non-10 base) | \(E[60]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 60{1}2 | ||
| Steinhaus-Moser Notation | 5[3] | 6[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[59] | (0)[60] | |
| m(n) map | m(1)(5) | m(1)(6) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1775)\) | \(s(1)(\lambda x . x+1)(1776)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3552 composite?
- ↑ Wolfram Alpha 3552's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3552 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers