| 3564 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 3500 | 3501 | 3502 | 3503 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 |
| 3510 | 3511 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 |
| 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | 3528 | 3529 |
| 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | 3536 | 3537 | 3538 | 3539 |
| 3540 | 3541 | 3542 | 3543 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 |
| 3550 | 3551 | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 |
| 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | 3568 | 3569 |
| 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 |
| 3580 | 3581 | 3582 | 3583 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 |
| 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 |
3564 is the number following 3563 and preceding 3565.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 27, 33, 36, 44, 54, 66, 81, 99, 108, 132, 162, 198, 297, 324, 396, 594, 891, 1188, 1782 and 3564, making it a composite number.[1][2][3]
- 3564 is an even number[4][5] .
- 3564 is a happy number.[6][7]
- 3564 is abundant.[8]
- Its prime factorization is 22 × 34 × 111.
- 3564 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 60 ↑ 2 | ||
| Scientific notation | 3.564 x 103 | 3.565 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
| Copy notation | 35[2] | 36[2] | |
| Chained arrow notation | 60 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {60,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1782) | Hω(1782) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.5519 | ||
| Hyper-E notation (non-10 base) | \(E[60]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 60{1}2 | ||
| Steinhaus-Moser Notation | 5[3] | 6[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[59] | (0)[60] | |
| m(n) map | m(1)(5) | m(1)(6) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1781)\) | \(s(1)(\lambda x . x+1)(1782)\) | |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 3564 composite?
- ↑ Wolfram Alpha 3564's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 3564 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers