4482 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
4400 | 4401 | 4402 | 4403 | 4404 | 4405 | 4406 | 4407 | 4408 | 4409 |
4410 | 4411 | 4412 | 4413 | 4414 | 4415 | 4416 | 4417 | 4418 | 4419 |
4420 | 4421 | 4422 | 4423 | 4424 | 4425 | 4426 | 4427 | 4428 | 4429 |
4430 | 4431 | 4432 | 4433 | 4434 | 4435 | 4436 | 4437 | 4438 | 4439 |
4440 | 4441 | 4442 | 4443 | 4444 | 4445 | 4446 | 4447 | 4448 | 4449 |
4450 | 4451 | 4452 | 4453 | 4454 | 4455 | 4456 | 4457 | 4458 | 4459 |
4460 | 4461 | 4462 | 4463 | 4464 | 4465 | 4466 | 4467 | 4468 | 4469 |
4470 | 4471 | 4472 | 4473 | 4474 | 4475 | 4476 | 4477 | 4478 | 4479 |
4480 | 4481 | 4482 | 4483 | 4484 | 4485 | 4486 | 4487 | 4488 | 4489 |
4490 | 4491 | 4492 | 4493 | 4494 | 4495 | 4496 | 4497 | 4498 | 4499 |
4482 is the number following 4481 and preceding 4483.
Properties[]
- Its factors are 1, 2, 3, 6, 9, 18, 27, 54, 83, 166, 249, 498, 747, 1494, 2241 and 4482, making it a composite number.[1][2][3]
- 4482 is an even number[4][5] .
- 4482 is a happy number.[6][7]
- 4482 is abundant.[8]
- Its prime factorization is 21 × 33 × 831.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 67 ↑ 2 | ||
Scientific notation | 4.482 x 103 | 4.483 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 4[4] | 45[2] | |
Chained arrow notation | 67 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {67,2} | ||
Fast-growing hierarchy | f2(8) | f2(9) | |
Hardy hierarchy | Hω(2241) | Hω(2241) | |
Middle-growing hierarchy | m(ω,12) | m(ω,13) | |
Hyper-E notation | E3.6515 | ||
Hyper-E notation (non-10 base) | \(E[67]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 67{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.2) | H(0.3) | |
Bashicu matrix system with respect to version 4 | (0)[66] | (0)[67] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(2240)\) | \(s(1)(\lambda x . x+1)(2241)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 4482 composite?
- ↑ Wolfram Alpha 4482's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 4482 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers