498 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 |
410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 |
420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 |
430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 |
440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 |
450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 |
460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 |
470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 |
480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 |
490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 |
498 is the number following 497 and preceding 499.
Properties[]
- Its factors are 1, 2, 3, 6, 83, 166, 249 and 498, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 498 is an even number[5][6] .
- 498 is an unhappy number.[7][8]
- 498 is abundant.[9]
- Its prime factorization is 21 × 31 × 831.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 22 ↑ 2 | ||
Scientific notation | 4.98 x 102 | 4.981 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 4[3] | 5[3] | |
Chained arrow notation | 22 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {22,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(249) | Hω(249) | |
Middle-growing hierarchy | m(ω,8) | m(ω,9) | |
Hyper-E notation | E2.6972 | ||
Hyper-E notation (non-10 base) | \(E[22]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 22{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.2) | H(-0.1) | |
Bashicu matrix system with respect to version 4 | (0)[22] | (0)[23] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(248)\) | \(s(1)(\lambda x . x+1)(249)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 498 composite?
- ↑ Wolfram Alpha 498's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 498 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers