5016 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
5000 | 5001 | 5002 | 5003 | 5004 | 5005 | 5006 | 5007 | 5008 | 5009 |
5010 | 5011 | 5012 | 5013 | 5014 | 5015 | 5016 | 5017 | 5018 | 5019 |
5020 | 5021 | 5022 | 5023 | 5024 | 5025 | 5026 | 5027 | 5028 | 5029 |
5030 | 5031 | 5032 | 5033 | 5034 | 5035 | 5036 | 5037 | 5038 | 5039 |
5040 | 5041 | 5042 | 5043 | 5044 | 5045 | 5046 | 5047 | 5048 | 5049 |
5050 | 5051 | 5052 | 5053 | 5054 | 5055 | 5056 | 5057 | 5058 | 5059 |
5060 | 5061 | 5062 | 5063 | 5064 | 5065 | 5066 | 5067 | 5068 | 5069 |
5070 | 5071 | 5072 | 5073 | 5074 | 5075 | 5076 | 5077 | 5078 | 5079 |
5080 | 5081 | 5082 | 5083 | 5084 | 5085 | 5086 | 5087 | 5088 | 5089 |
5090 | 5091 | 5092 | 5093 | 5094 | 5095 | 5096 | 5097 | 5098 | 5099 |
5016 is the number following 5015 and preceding 5017.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 11, 12, 19, 22, 24, 33, 38, 44, 57, 66, 76, 88, 114, 132, 152, 209, 228, 264, 418, 456, 627, 836, 1254, 1672, 2508 and 5016, making it a composite number.[1][2][3]
- 5016 is an even number[4][5] .
- 5016 is an unhappy number.[6][7]
- 5016 is abundant.[8]
- Its prime factorization is 23 × 31 × 111 × 191.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 71 ↑ 2 | ||
Scientific notation | 5.016 x 103 | 5.017 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 49[2] | 50[2] | |
Chained arrow notation | 71 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {71,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(2508) | Hω(2508) | |
Middle-growing hierarchy | m(ω,12) | m(ω,13) | |
Hyper-E notation | E3.7004 | ||
Hyper-E notation (non-10 base) | \(E[71]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 71{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.2) | H(0.3) | |
Bashicu matrix system with respect to version 4 | (0)[70] | (0)[71] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(2507)\) | \(s(1)(\lambda x . x+1)(2508)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 5016 composite?
- ↑ Wolfram Alpha 5016's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 5016 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers