5040 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
5000 | 5001 | 5002 | 5003 | 5004 | 5005 | 5006 | 5007 | 5008 | 5009 |
5010 | 5011 | 5012 | 5013 | 5014 | 5015 | 5016 | 5017 | 5018 | 5019 |
5020 | 5021 | 5022 | 5023 | 5024 | 5025 | 5026 | 5027 | 5028 | 5029 |
5030 | 5031 | 5032 | 5033 | 5034 | 5035 | 5036 | 5037 | 5038 | 5039 |
5040 | 5041 | 5042 | 5043 | 5044 | 5045 | 5046 | 5047 | 5048 | 5049 |
5050 | 5051 | 5052 | 5053 | 5054 | 5055 | 5056 | 5057 | 5058 | 5059 |
5060 | 5061 | 5062 | 5063 | 5064 | 5065 | 5066 | 5067 | 5068 | 5069 |
5070 | 5071 | 5072 | 5073 | 5074 | 5075 | 5076 | 5077 | 5078 | 5079 |
5080 | 5081 | 5082 | 5083 | 5084 | 5085 | 5086 | 5087 | 5088 | 5089 |
5090 | 5091 | 5092 | 5093 | 5094 | 5095 | 5096 | 5097 | 5098 | 5099 |
5040 is the number following 5039 and preceding 5041[1].
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48, 56, 60, 63, 70, 72, 80, 84, 90, 105, 112, 120, 126, 140, 144, 168, 180, 210, 240, 252, 280, 315, 336, 360, 420, 504, 560, 630, 720, 840, 1008, 1260, 1680, 2520 and 5040, making it a composite number.[2][3][4]
- 5040 is an even number[5][6] .
- 5040 is an unhappy number.[7][8]
- 5040 is a factorial.[9]
- 5040 is abundant and superabundant.[10][11]
- Its prime factorization is 24 × 32 × 51 × 71.
- 5040 is a highly composite number, meaning it has more divisors than any number less than it.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 71 ↑ 2 | ||
Scientific notation | 5.04 x 103 | 5.041 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 49[2] | 50[2] | |
Chained arrow notation | 71 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {71,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(2520) | Hω(2520) | |
Middle-growing hierarchy | m(ω,12) | m(ω,13) | |
Hyper-E notation | E3.7024 | ||
Hyper-E notation (non-10 base) | \(E[71]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 71{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.2) | H(0.3) | |
Bashicu matrix system with respect to version 4 | (0)[70] | (0)[71] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(2519)\) | \(s(1)(\lambda x . x+1)(2520)\) |
Sources[]
- ↑ Wolfram Alpha 5040
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 5040 composite?
- ↑ Wolfram Alpha 5040's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 5040 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000142 - Factorial numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers