5056 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
5000 | 5001 | 5002 | 5003 | 5004 | 5005 | 5006 | 5007 | 5008 | 5009 |
5010 | 5011 | 5012 | 5013 | 5014 | 5015 | 5016 | 5017 | 5018 | 5019 |
5020 | 5021 | 5022 | 5023 | 5024 | 5025 | 5026 | 5027 | 5028 | 5029 |
5030 | 5031 | 5032 | 5033 | 5034 | 5035 | 5036 | 5037 | 5038 | 5039 |
5040 | 5041 | 5042 | 5043 | 5044 | 5045 | 5046 | 5047 | 5048 | 5049 |
5050 | 5051 | 5052 | 5053 | 5054 | 5055 | 5056 | 5057 | 5058 | 5059 |
5060 | 5061 | 5062 | 5063 | 5064 | 5065 | 5066 | 5067 | 5068 | 5069 |
5070 | 5071 | 5072 | 5073 | 5074 | 5075 | 5076 | 5077 | 5078 | 5079 |
5080 | 5081 | 5082 | 5083 | 5084 | 5085 | 5086 | 5087 | 5088 | 5089 |
5090 | 5091 | 5092 | 5093 | 5094 | 5095 | 5096 | 5097 | 5098 | 5099 |
5056 is the number following 5055 and preceding 5057.
Properties[]
- Its factors are 1, 2, 4, 8, 16, 32, 64, 79, 158, 316, 632, 1264, 2528 and 5056, making it a composite number.[1][2][3]
- 5056 is an even number[4][5] .
- 5056 is a happy number.[6][7]
- 5056 is abundant.[8]
- Its prime factorization is 26 × 791.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 71 ↑ 2 | ||
Scientific notation | 5.056 x 103 | 5.057 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 50[2] | 51[2] | |
Chained arrow notation | 71 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {71,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(2528) | Hω(2528) | |
Middle-growing hierarchy | m(ω,12) | m(ω,13) | |
Hyper-E notation | E3.7038 | ||
Hyper-E notation (non-10 base) | \(E[71]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 71{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.2) | H(0.3) | |
Bashicu matrix system with respect to version 4 | (0)[71] | (0)[72] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(2527)\) | \(s(1)(\lambda x . x+1)(2528)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 5056 composite?
- ↑ Wolfram Alpha 5056's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 5056 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005101 - Abundant numbers