528 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | 509 |
510 | 511 | 512 | 513 | 514 | 515 | 516 | 517 | 518 | 519 |
520 | 521 | 522 | 523 | 524 | 525 | 526 | 527 | 528 | 529 |
530 | 531 | 532 | 533 | 534 | 535 | 536 | 537 | 538 | 539 |
540 | 541 | 542 | 543 | 544 | 545 | 546 | 547 | 548 | 549 |
550 | 551 | 552 | 553 | 554 | 555 | 556 | 557 | 558 | 559 |
560 | 561 | 562 | 563 | 564 | 565 | 566 | 567 | 568 | 569 |
570 | 571 | 572 | 573 | 574 | 575 | 576 | 577 | 578 | 579 |
580 | 581 | 582 | 583 | 584 | 585 | 586 | 587 | 588 | 589 |
590 | 591 | 592 | 593 | 594 | 595 | 596 | 597 | 598 | 599 |
528 is the number following 527 and preceding 529.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264 and 528, making it a composite number.[1][2][3]
- 528 is an even number[4][5] .
- 528 is an unhappy number.[6][7]
- 528 is a triangular number.[8]
- 528 is abundant.[9]
- Its prime factorization is 24 × 31 × 111.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 23 ↑ 2 | ||
Scientific notation | 5.28 x 102 | 5.281 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 4[3] | 5[3] | |
Chained arrow notation | 23 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {23,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(264) | Hω(264) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.7226 | ||
Hyper-E notation (non-10 base) | \(E[23]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 23{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[22] | (0)[23] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(263)\) | \(s(1)(\lambda x . x+1)(264)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 528 composite?
- ↑ Wolfram Alpha 528's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 528 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000217 - Triangular numbers
- ↑ OEIS A005101 - Abundant numbers