641 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
600 | 601 | 602 | 603 | 604 | 605 | 606 | 607 | 608 | 609 |
610 | 611 | 612 | 613 | 614 | 615 | 616 | 617 | 618 | 619 |
620 | 621 | 622 | 623 | 624 | 625 | 626 | 627 | 628 | 629 |
630 | 631 | 632 | 633 | 634 | 635 | 636 | 637 | 638 | 639 |
640 | 641 | 642 | 643 | 644 | 645 | 646 | 647 | 648 | 649 |
650 | 651 | 652 | 653 | 654 | 655 | 656 | 657 | 658 | 659 |
660 | 661 | 662 | 663 | 664 | 665 | 666 | 667 | 668 | 669 |
670 | 671 | 672 | 673 | 674 | 675 | 676 | 677 | 678 | 679 |
680 | 681 | 682 | 683 | 684 | 685 | 686 | 687 | 688 | 689 |
690 | 691 | 692 | 693 | 694 | 695 | 696 | 697 | 698 | 699 |
641 is the number following 640 and preceding 642.
Properties[]
- It is the 116th prime number.[1][2][3] It is also a Sophie Germain prime number.[4]
- 641 is an odd number[5][6] .
- 641 is an unhappy number.[7][8]
- 641 is deficient.[9]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 25 ↑ 2 | ||
Scientific notation | 6.41 x 102 | 6.411 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 5[3] | 6[3] | |
Chained arrow notation | 25 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {25,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(320) | Hω(321) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.8069 | ||
Hyper-E notation (non-10 base) | \(E[25]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 25{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[25] | (0)[26] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(319)\) | \(s(1)(\lambda x . x+1)(320)\) |
Sources[]
- ↑ OEIS A000040 - Primes
- ↑ Wolfram Alpha Is 641 prime?
- ↑ Wolfram Alpha 641's factors
- ↑ OEIS A005384 - Sophie Germain primes
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 641 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers