6773 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
6700 | 6701 | 6702 | 6703 | 6704 | 6705 | 6706 | 6707 | 6708 | 6709 |
6710 | 6711 | 6712 | 6713 | 6714 | 6715 | 6716 | 6717 | 6718 | 6719 |
6720 | 6721 | 6722 | 6723 | 6724 | 6725 | 6726 | 6727 | 6728 | 6729 |
6730 | 6731 | 6732 | 6733 | 6734 | 6735 | 6736 | 6737 | 6738 | 6739 |
6740 | 6741 | 6742 | 6743 | 6744 | 6745 | 6746 | 6747 | 6748 | 6749 |
6750 | 6751 | 6752 | 6753 | 6754 | 6755 | 6756 | 6757 | 6758 | 6759 |
6760 | 6761 | 6762 | 6763 | 6764 | 6765 | 6766 | 6767 | 6768 | 6769 |
6770 | 6771 | 6772 | 6773 | 6774 | 6775 | 6776 | 6777 | 6778 | 6779 |
6780 | 6781 | 6782 | 6783 | 6784 | 6785 | 6786 | 6787 | 6788 | 6789 |
6790 | 6791 | 6792 | 6793 | 6794 | 6795 | 6796 | 6797 | 6798 | 6799 |
6773 is the number following 6772 and preceding 6774.
Properties[]
- Its factors are 1, 13, 521 and 6773, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 6773 is an odd number[5][6] .
- 6773 is an unhappy number.[7][8]
- 6773 is deficient.[9]
- Its prime factorization is 131 × 5211.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 82 ↑ 2 | ||
Scientific notation | 6.773 x 103 | 6.774 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 67[2] | 68[2] | |
Chained arrow notation | 82 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {82,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(3386) | Hω(3387) | |
Middle-growing hierarchy | m(ω,12) | m(ω,13) | |
Hyper-E notation | E3.8308 | ||
Hyper-E notation (non-10 base) | \(E[82]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 82{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.2) | H(0.3) | |
Bashicu matrix system with respect to version 4 | (0)[82] | (0)[83] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(3385)\) | \(s(1)(\lambda x . x+1)(3386)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 6773 composite?
- ↑ Wolfram Alpha 6773's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 6773 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers