715 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 |
710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 |
720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 |
730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 |
740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 |
750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 |
760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 |
770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 |
780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 |
790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 |
715 is the number following 714 and preceding 716.
Properties[]
- Its factors are 1, 5, 11, 13, 55, 65, 143 and 715, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 715 is an odd number[5][6] .
- 715 is an unhappy number.[7][8]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 27 ↑ 2 | ||
Scientific notation | 7.15 x 102 | 7.151 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 6[3] | 7[3] | |
Chained arrow notation | 27 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {27,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(357) | Hω(358) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.8543 | ||
Hyper-E notation (non-10 base) | \(E[27]2\) | ||
Hyperfactorial array notation | 5! | 6! | |
X-Sequence Hyper-Exponential Notation | 27{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[26] | (0)[27] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(356)\) | \(s(1)(\lambda x . x+1)(357)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 715 composite?
- ↑ Wolfram Alpha 715's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005408 - Odd numbers
- ↑ Wolfram Alpha Is 715 odd?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000326 - Pentagonal numbers
- ↑ OEIS A005100 - Deficient numbers