720 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
700 | 701 | 702 | 703 | 704 | 705 | 706 | 707 | 708 | 709 |
710 | 711 | 712 | 713 | 714 | 715 | 716 | 717 | 718 | 719 |
720 | 721 | 722 | 723 | 724 | 725 | 726 | 727 | 728 | 729 |
730 | 731 | 732 | 733 | 734 | 735 | 736 | 737 | 738 | 739 |
740 | 741 | 742 | 743 | 744 | 745 | 746 | 747 | 748 | 749 |
750 | 751 | 752 | 753 | 754 | 755 | 756 | 757 | 758 | 759 |
760 | 761 | 762 | 763 | 764 | 765 | 766 | 767 | 768 | 769 |
770 | 771 | 772 | 773 | 774 | 775 | 776 | 777 | 778 | 779 |
780 | 781 | 782 | 783 | 784 | 785 | 786 | 787 | 788 | 789 |
790 | 791 | 792 | 793 | 794 | 795 | 796 | 797 | 798 | 799 |
720 is the number following 719 and preceding 721.
Properties[]
- Its factors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360 and 720, making it a composite number.[1][2][3]
- 720 is an even number[4][5] .
- 720 is an unhappy number.[6][7]
- 720 is a factorial.[8]
- 720 is abundant and superabundant.[9][10]
- Its prime factorization is 24 × 32 × 51.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 27 ↑ 2 | ||
Scientific notation | 7.2 x 102 | 7.201 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 6[3] | 7[3] | |
Chained arrow notation | 27 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {27,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(360) | Hω(360) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.8573 | ||
Hyper-E notation (non-10 base) | \(E[27]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 27{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[26] | (0)[27] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(359)\) | \(s(1)(\lambda x . x+1)(360)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 720 composite?
- ↑ Wolfram Alpha 720's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 720 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A000142 - Factorial numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A004394 - Superabundant numbers