838 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
800 | 801 | 802 | 803 | 804 | 805 | 806 | 807 | 808 | 809 |
810 | 811 | 812 | 813 | 814 | 815 | 816 | 817 | 818 | 819 |
820 | 821 | 822 | 823 | 824 | 825 | 826 | 827 | 828 | 829 |
830 | 831 | 832 | 833 | 834 | 835 | 836 | 837 | 838 | 839 |
840 | 841 | 842 | 843 | 844 | 845 | 846 | 847 | 848 | 849 |
850 | 851 | 852 | 853 | 854 | 855 | 856 | 857 | 858 | 859 |
860 | 861 | 862 | 863 | 864 | 865 | 866 | 867 | 868 | 869 |
870 | 871 | 872 | 873 | 874 | 875 | 876 | 877 | 878 | 879 |
880 | 881 | 882 | 883 | 884 | 885 | 886 | 887 | 888 | 889 |
890 | 891 | 892 | 893 | 894 | 895 | 896 | 897 | 898 | 899 |
838 is the number following 837 and preceding 839.
Properties[]
- Its factors are 1, 2, 419 and 838, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 838 is an even number[5][6] .
- 838 is an unhappy number.[7][8]
- 838 is deficient.[9]
- Its prime factorization is 21 × 4191.
- 838 is a palindromic number, meaning it is the same forwards and reverse.[10][11]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 29 ↑ 2 | ||
Scientific notation | 8.38 x 102 | 8.381 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 7[3] | 8[3] | |
Chained arrow notation | 29 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {29,2} | ||
Fast-growing hierarchy | f2(6) | f2(7) | |
Hardy hierarchy | Hω(419) | Hω(419) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.9232 | ||
Hyper-E notation (non-10 base) | \(E[29]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 29{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[28] | (0)[29] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(418)\) | \(s(1)(\lambda x . x+1)(419)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 838 composite?
- ↑ Wolfram Alpha 838's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 838 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005100 - Deficient numbers
- ↑ Wolfram Alpha Is 838 a palindrome?
- ↑ OEIS A002113 - Palindromes