8928 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
8900 | 8901 | 8902 | 8903 | 8904 | 8905 | 8906 | 8907 | 8908 | 8909 |
8910 | 8911 | 8912 | 8913 | 8914 | 8915 | 8916 | 8917 | 8918 | 8919 |
8920 | 8921 | 8922 | 8923 | 8924 | 8925 | 8926 | 8927 | 8928 | 8929 |
8930 | 8931 | 8932 | 8933 | 8934 | 8935 | 8936 | 8937 | 8938 | 8939 |
8940 | 8941 | 8942 | 8943 | 8944 | 8945 | 8946 | 8947 | 8948 | 8949 |
8950 | 8951 | 8952 | 8953 | 8954 | 8955 | 8956 | 8957 | 8958 | 8959 |
8960 | 8961 | 8962 | 8963 | 8964 | 8965 | 8966 | 8967 | 8968 | 8969 |
8970 | 8971 | 8972 | 8973 | 8974 | 8975 | 8976 | 8977 | 8978 | 8979 |
8980 | 8981 | 8982 | 8983 | 8984 | 8985 | 8986 | 8987 | 8988 | 8989 |
8990 | 8991 | 8992 | 8993 | 8994 | 8995 | 8996 | 8997 | 8998 | 8999 |
8928 is the number following 8927 and preceding 8929.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 31, 32, 36, 48, 62, 72, 93, 96, 124, 144, 186, 248, 279, 288, 372, 496, 558, 744, 992, 1116, 1488, 2232, 2976, 4464 and 8928, making it a composite number.[1][2][3]
- 8928 is an even number[4][5] .
- 8928 is an unhappy number.[6][7]
- 8928 is abundant.[8]
- Its prime factorization is 25 × 32 × 311.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 94 ↑ 2 | ||
Scientific notation | 8.928 x 103 | 8.929 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 8[4] | 89[2] | |
Chained arrow notation | 94 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {94,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(4464) | Hω(4464) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E3.9508 | ||
Hyper-E notation (non-10 base) | \(E[94]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 94{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[94] | (0)[95] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(4463)\) | \(s(1)(\lambda x . x+1)(4464)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 8928 composite?
- ↑ Wolfram Alpha 8928's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 8928 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers