9230 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
9200 | 9201 | 9202 | 9203 | 9204 | 9205 | 9206 | 9207 | 9208 | 9209 |
9210 | 9211 | 9212 | 9213 | 9214 | 9215 | 9216 | 9217 | 9218 | 9219 |
9220 | 9221 | 9222 | 9223 | 9224 | 9225 | 9226 | 9227 | 9228 | 9229 |
9230 | 9231 | 9232 | 9233 | 9234 | 9235 | 9236 | 9237 | 9238 | 9239 |
9240 | 9241 | 9242 | 9243 | 9244 | 9245 | 9246 | 9247 | 9248 | 9249 |
9250 | 9251 | 9252 | 9253 | 9254 | 9255 | 9256 | 9257 | 9258 | 9259 |
9260 | 9261 | 9262 | 9263 | 9264 | 9265 | 9266 | 9267 | 9268 | 9269 |
9270 | 9271 | 9272 | 9273 | 9274 | 9275 | 9276 | 9277 | 9278 | 9279 |
9280 | 9281 | 9282 | 9283 | 9284 | 9285 | 9286 | 9287 | 9288 | 9289 |
9290 | 9291 | 9292 | 9293 | 9294 | 9295 | 9296 | 9297 | 9298 | 9299 |
9230 is the number following 9229 and preceding 9231.
Properties[]
- Its factors are 1, 2, 5, 10, 13, 26, 65, 71, 130, 142, 355, 710, 923, 1846, 4615 and 9230, making it a composite number.[1][2][3] It is also a squarefree number.[4]
- 9230 is an even number[5][6] .
- 9230 is a happy number.[7][8]
- 9230 is deficient.[9]
- Its prime factorization is 21 × 51 × 131 × 711.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 96 ↑ 2 | ||
Scientific notation | 9.23 x 103 | 9.231 x 103 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
Copy notation | 91[2] | 92[2] | |
Chained arrow notation | 96 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {96,2} | ||
Fast-growing hierarchy | f2(9) | f2(10) | |
Hardy hierarchy | Hω(4615) | Hω(4615) | |
Middle-growing hierarchy | m(ω,13) | m(ω,14) | |
Hyper-E notation | E3.9652 | ||
Hyper-E notation (non-10 base) | \(E[96]2\) | ||
Hyperfactorial array notation | 7! | 8! | |
X-Sequence Hyper-Exponential Notation | 96{1}2 | ||
Steinhaus-Moser Notation | 5[3] | 6[3] | |
PlantStar's Debut Notation | [2] | [3] | |
H* function | H(0.3) | H(0.4) | |
Bashicu matrix system with respect to version 4 | (0)[96] | (0)[97] | |
m(n) map | m(1)(5) | m(1)(6) | |
s(n) map | \(s(1)(\lambda x . x+1)(4614)\) | \(s(1)(\lambda x . x+1)(4615)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 9230 composite?
- ↑ Wolfram Alpha 9230's factors
- ↑ OEIS A005117 - Squarefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 9230 even?
- ↑ Wolfram Alpha Happy Numbers
- ↑ OEIS A007770 - Happy Numbers
- ↑ OEIS A005100 - Deficient numbers