996 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
900 | 901 | 902 | 903 | 904 | 905 | 906 | 907 | 908 | 909 |
910 | 911 | 912 | 913 | 914 | 915 | 916 | 917 | 918 | 919 |
920 | 921 | 922 | 923 | 924 | 925 | 926 | 927 | 928 | 929 |
930 | 931 | 932 | 933 | 934 | 935 | 936 | 937 | 938 | 939 |
940 | 941 | 942 | 943 | 944 | 945 | 946 | 947 | 948 | 949 |
950 | 951 | 952 | 953 | 954 | 955 | 956 | 957 | 958 | 959 |
960 | 961 | 962 | 963 | 964 | 965 | 966 | 967 | 968 | 969 |
970 | 971 | 972 | 973 | 974 | 975 | 976 | 977 | 978 | 979 |
980 | 981 | 982 | 983 | 984 | 985 | 986 | 987 | 988 | 989 |
990 | 991 | 992 | 993 | 994 | 995 | 996 | 997 | 998 | 999 |
996 is the number following 995 and preceding 997.
Properties[]
- Its factors are 1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498 and 996, making it a composite number.[1][2][3] It is also a cubefree number.[4]
- 996 is an even number[5][6] .
- 996 is an unhappy number.[7][8]
- 996 is abundant.[9]
- Its prime factorization is 22 × 31 × 831.
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 10 ↑ 3 | ||
Scientific notation | 9.96 x 102 | 9.961 x 102 | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 8[3] | 9[3] | |
Chained arrow notation | 10 → 3 | ||
Bowers' Exploding Array Function/Bird's array notation | {10,3} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(498) | Hω(498) | |
Middle-growing hierarchy | m(ω,9) | m(ω,10) | |
Hyper-E notation | E2.9983 | ||
Hyper-E notation (non-10 base) | \(E[10]3\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 10{1}3 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(-0.1) | H(-0) | |
Bashicu matrix system with respect to version 4 | (0)[31] | (0)[32] | |
m(n) map | m(1)(4) | m(1)(5) | |
s(n) map | \(s(1)(\lambda x . x+1)(497)\) | \(s(1)(\lambda x . x+1)(498)\) |
Sources[]
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is 996 composite?
- ↑ Wolfram Alpha 996's factors
- ↑ OEIS A004709 - Cubefree numbers
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is 996 even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers