Arai's \(\psi\) function is an ordinal collapsing function introduced by Toshiyasu Arai based on first order reflection under an extension \(\textrm{ZFLK}_N\) of \(\textrm{ZFC}\).[1] Arai also introduced a new simplified ordinal notation \(OT\) associated to Arai's \(\psi\).[1]
Using \(OT\), Arai verified several results in proof theory. The paper is devoted to show that for a \(\Sigma_1\)-sentence \(\theta\) such that \(\mathsf{KP\Pi_N \vdash \theta}\), there exists a finite \(n\) such that \(L_\alpha \models \theta\) for \(\alpha = \psi_\Omega(\Omega_n(\mathbb{K}_N + 1))\).[1] Theorem 1.1 Arai also stated without an explicit proof that \(\textrm{KP}\Pi_N\) proves that each initial segment \(\{\alpha \in OT \colon \alpha < \psi_\Omega(\Omega_n(\mathbb{K}_N + 1))\}; n = 1, 2, \ldots\) is well-founded, where the comparison means the bound of the order type,[1] Theorem 1.2 and concluded that \(\psi_{\Omega_1}(\varepsilon_{\mathbb{K}+1})\) is the proof-theoretic ordinal \(|\textrm{KP}\Pi_N|_{\Sigma_1^{\Omega}}\) of \(\textrm{KP}\Pi_N\) defined in terms of \(\Sigma_1\)-reflection, where \(\mathbb{K}\) is the least \(\Pi_N\)-reflecting ordinal and \(\textrm{KP}\Pi_N\) is Kripke–Platek set theory for the \(\Pi_N\)-reflecting universe.[1] Theorem 1.3
Sources[]
See also[]
Basics: cardinal numbers · ordinal numbers · limit ordinals · fundamental sequence · normal form · transfinite induction · ordinal notation · Absolute infinity
Theories: Robinson arithmetic · Presburger arithmetic · Peano arithmetic · KP · second-order arithmetic · ZFC
Model Theoretic Concepts: structure · elementary embedding
Countable ordinals: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) · \(\Gamma_0\) (Feferman–Schütte ordinal) · \(\varphi(1,0,0,0)\) (Ackermann ordinal) · \(\psi_0(\Omega^{\Omega^\omega})\) (small Veblen ordinal) · \(\psi_0(\Omega^{\Omega^\Omega})\) (large Veblen ordinal) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\) (Bachmann-Howard ordinal) · \(\psi_0(\Omega_\omega)\) with respect to Buchholz's ψ · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\) (Takeuti-Feferman-Buchholz ordinal) · \(\psi_0(\Omega_{\Omega_{\cdot_{\cdot_{\cdot}}}})\) (countable limit of Extended Buchholz's function) · \(\omega_1^\mathfrak{Ch}\) (Omega one of chess) · \(\omega_1^{\text{CK}}\) (Church-Kleene ordinal) · \(\omega_\alpha^\text{CK}\) (admissible ordinal) · recursively inaccessible ordinal · recursively Mahlo ordinal · reflecting ordinal · stable ordinal · \(\lambda,\gamma,\zeta,\Sigma\) (Infinite time Turing machine ordinals) · gap ordinal · List of countable ordinals
Ordinal hierarchies: Fast-growing hierarchy · Hardy hierarchy · Slow-growing hierarchy · Middle-growing hierarchy · N-growing hierarchy
Ordinal functions: enumeration · normal function · derivative · Veblen function · ordinal collapsing function · Weak Buchholz's function · Bachmann's function · Madore's function · Feferman's theta function · Buchholz's function · Extended Weak Buchholz's function · Extended Buchholz's function · Jäger-Buchholz function · Jäger's function · Rathjen's psi function · Rathjen's Psi function · Stegert's Psi function · Arai's psi function
Uncountable cardinals: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal · Berkeley cardinal · (Club Berkeley cardinal · limit club Berkeley cardinal)
Classes: \(\textrm{Card}\) · \(\textrm{On}\) · \(V\) · \(L\) · \(\textrm{Lim}\) · \(\textrm{AP}\) · Class (set theory)
By Aeton: Okojo numbers · N-growing hierarchy
By 新井 (Arai): Arai's psi function
By aster: White-aster notation · White-aster
By バシク (BashicuHyudora): Primitive sequence number · Pair sequence number · Bashicu matrix system 1/2/3/4 original idea
By ふぃっしゅ (Fish): Fish numbers (Fish number 1 · Fish number 2 · Fish number 3 · Fish number 4 · Fish number 5 · Fish number 6 · Fish number 7 · S map · SS map · s(n) map · m(n) map · m(m,n) map) · Bashicu matrix system 1/2/3/4 formalisation · TR function (I0 function)
By Gaoji: Weak Buchholz's function
By じぇいそん (Jason): Irrational arrow notation · δOCF · δφ · ε function
By 甘露東風 (Kanrokoti): KumaKuma ψ function
By koteitan: Bashicu matrix system 2.3
By mrna: 段階配列表記 · 降下段階配列表記 · 多変数段階配列表記 · SSAN · S-σ
By Naruyoko Naruyo: Y sequence formalisation · ω-Y sequence formalisation
By Nayuta Ito: N primitive · Flan numbers (Flan number 1 · Flan number 2 · Flan number 3 · Flan number 4 version 3 · Flan number 5 version 3) · Large Number Lying on the Boundary of the Rule of Touhou Large Number 4 · Googology Wiki can have an article with any gibberish if it's assigned to a number
By Okkuu: Extended Weak Buchholz's function
By p進大好きbot: Ordinal notation associated to Extended Weak Buchholz's function · Ordinal notation associated to Extended Buchholz's function · Naruyoko is the great · Large Number Garden Number
By たろう (Taro): Taro's multivariable Ackermann function
By ゆきと (Yukito): Hyper primitive sequence system · Y sequence original idea · YY sequence · Y function · ω-Y sequence original idea
By バシク (BashicuHyudora): Bashicu matrix system as a notation template
By じぇいそん (Jason): Shifting definition
By mrna: Side nesting
By Nayuta Ito and ゆきと (Yukito): Difference sequence system
By ふぃっしゅ (Fish): Ackermann function
By koteitan: Ackermann function · Beklemishev's worms · KumaKuma ψ function
By Mitsuki1729: Ackermann function · Graham's number · Conway's Tetratri · Fish number 1 · Fish number 2 · Laver table
By みずどら: White-aster notation
By Naruyoko Naruyo: p進大好きbot's Translation map for pair sequence system and Buchholz's ordinal notation · KumaKuma ψ function · Naruyoko is the great
By 猫山にゃん太 (Nekoyama Nyanta): Flan number 4 version 3 · Fish number 5 · Laver table
By Okkuu: Fish number 1 · Fish number 2 · Fish number 3 · Fish number 5 · Fish number 6
By rpakr: p進大好きbot's ordinal notation associated to Extended Weak Buchholz's function · Standardness decision algorithm for Taranovsky's ordinal notation
By ふぃっしゅ (Fish): Computing last 100000 digits of mega · Approximation method for FGH using Arrow notation · Translation map for primitive sequence system and Cantor normal form
By Kihara: Proof of an estimation of TREE sequence · Proof of the incomparability of Busy Beaver function and FGH associated to Kleene's \(\mathcal{O}\)
By koteitan: Translation map for primitive sequence system and Cantor normal form
By Naruyoko Naruyo: Translation map for Extended Weak Buchholz's function and Extended Buchholz's function
By Nayuta Ito: Comparison of Steinhaus-Moser Notation and Ampersand Notation
By Okkuu: Verification of みずどら's computation program of White-aster notation
By p進大好きbot: Proof of the termination of Hyper primitive sequence system · Proof of the termination of Pair sequence number · Proof of the termination of segements of TR function in the base theory under the assumption of the \(\Sigma_1\)-soundness and the pointwise well-definedness of \(\textrm{TR}(T,n)\) for the case where \(T\) is the formalisation of the base theory
By 小林銅蟲 (Kobayashi Doom): Sushi Kokuu Hen
By koteitan: Dancing video of a Gijinka of Fukashigi · Dancing video of a Gijinka of 久界 · Storyteller's theotre video reading Large Number Garden Number aloud
See also: Template:Googology in Asia