The asankhyeya (also called asaṃkhyeya[1]) is a number described in Buddhist texts that is equal to \(10^{140}\), or 1 followed by 140 zeroes.[2] It is pronounced Asougi in Japanese where it is equal to \(10^{56}\), and means "innumerable". See meaning of asankhyeya in the ancient Indian literature for Jaghanya Parīta Asaṃkhyāta.
The Avatamsaka Sutra [1] gives an alternate description of Asankhyeya as \(10^{7\times2^{103}}\), defining a series of numbers that are squares of each other starting with one koti equalling \(10^7\), one koti kotis making an ayuta (\(10^{14}\)), one ayuta ayutas making a nayuta (\(10^{28}\)), and so on, with Asankhyeya being the 104th number in this chain.
Approximations[]
For 10140:
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1\times10^{140}\) | |
Arrow notation | \(10\uparrow140\) | |
Steinhaus-Moser Notation | 74[3] | 75[3] |
Copy notation | 9[140] | 1[141] |
Taro's multivariable Ackermann function | A(3,462) | A(3,463) |
Pound-Star Notation | #*(1,2,8,11,9,8,5)*12 | #*(4,4,10,5,7,2,5,2)*10 |
BEAF | {10,140} | |
Hyper-E notation | E140 | |
Bashicu matrix system | (0)(0)(0)(0)(0)[23713] | (0)(0)(0)(0)(0)[23714] |
Hyperfactorial array notation | 90! | 91! |
Fast-growing hierarchy | \(f_2(456)\) | \(f_2(457)\) |
Hardy hierarchy | \(H_{\omega^2}(456)\) | \(H_{\omega^2}(457)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^2+\omega4}}(10)\) |
For 107×2103:
Notation | Lower bound | Upper bound |
---|---|---|
Arrow notation | \((10\uparrow7)\uparrow2\uparrow103\) | |
Down-arrow notation | \(57\downarrow\downarrow19\) | \(715\downarrow\downarrow12\) |
Steinhaus-Moser Notation | 22[3][3] | 23[3][3] |
Copy notation | 6[6[32]] | 7[7[32]] |
H* function | H(23H(9)) | H(24H(9)) |
Taro's multivariable Ackermann function | A(3,A(3,104)) | A(3,A(3,105)) |
Pound-Star Notation | #*((1))*(1,10,10)*4 | #*((1))*(5,2,1)*6 |
BEAF | {{10,7},{2,103}} | |
Hyper-E notation | E(7E[2]103) | |
Bashicu matrix system | (0)(1)[10] | (0)(1)[11] |
Hyperfactorial array notation | (28!)! | (29!)! |
Fast-growing hierarchy | \(f_2(f_2(100))\) | \(f_2(f_2(101))\) |
Hardy hierarchy | \(H_{\omega^22}(100)\) | \(H_{\omega^22}(101)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^{\omega3+1}7}}(10)\) | \(g_{\omega^{\omega^{\omega3+1}8}}(10)\) |
Sources[]
- ↑ 1.0 1.1 "How large is one Asamkhyeya?" Bodhi Field. http://www.drbachinese.org/vbs/publish/462/vbs462p042.pdf
- ↑ [1]
See also[]
Indian counting system: Lakh · Crore · Padma · Tallakshana · Ogha · Ababa · Atata · Sogandhika · Uppala · Dvajagravati · Kumuda · Pundarika · Paduma · Kathana · Mahakathana · Asankhyeya · Dvajagranisamani · Vahanaprajnapti · Inga · Kuruta · Sarvanikshepa · Agrasara · Uttaraparamanurajahpravesa · Avatamsaka Sutra · Nirabhilapya nirabhilapya parivarta · Jaghanya Parīta Asaṃkhyāta
Chinese, Japanese and Korean counting system: Wan · Yi · Zhao · Jing · Gai · Zi · Rang · Gou · Jian · Zheng · Zai · Ji · Gougasha · Asougi · Nayuta · Fukashigi · Muryoutaisuu
See also: Template:Googology in Japan