- Not to be confused with Boogol.
Bigoogol is equal to googol+googol using hypermathematics.[1] It is equal to \(10^{201}+10^{100}=10^{100}(10^{101}+1)\) using the “regular” definition of addition. It has 202 digits.
Written out: 1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Its prime factorization is 2100 × 5100 × 11 × 607 × 809 × 1213 × 1327067281 × 11500490394117824585468796003575163076836624586334794818271756072956027758946488969.[2]
Approximations[]
Notation | Lower bound | Upper bound |
---|---|---|
Scientific notation | \(1\times10^{201}\) | \(1.001\times10^{201}\) |
Arrow notation | \(10\uparrow201\) | \(145\uparrow93\) |
Steinhaus-Moser Notation | 100[3] | 101[3] |
Copy notation | 9[201] | 10[101] |
Taro's multivariable Ackermann function | A(3,664) | A(3,665) |
Pound-Star Notation | #*((967))*9 | #*((968))*9 |
BEAF | {10,201} | {145,93} |
Hyper-E notation | E201 | 2E201 |
Bashicu matrix system | (0)(0)(0)(0)(0)(0)[1382] | (0)(0)(0)(0)(0)(0)[1383] |
Hyperfactorial array notation | 121! | 122! |
Fast-growing hierarchy | \(f_2(658)\) | \(f_2(659)\) |
Hardy hierarchy | \(H_{\omega^2}(658)\) | \(H_{\omega^2}(659)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^22+1}+\omega^{\omega^2}}(10)\) |
Sources[]
- ↑ Random numbers, A googol is a tiny dot. 2009/02/11
- ↑ Verification of this calculation by Python
See also[]
Hypermathematics: bigoogol · trigoogol · quadrigoogol · coogol(plex)
Hyperlicious: wakoogol(plex) · wakamoogol(plex) · wonkapoogol(plex) · ultron
Numbers with a W: woogol · wiggol · waggol · weegol · wigol · woggol · wagol · bwoogol · bwiggol · bwaggol · bweegol · bwigol · bwoggol · bwagol
Primes: Gooprol(plex) · Booprol · Trooprol · Quadrooprol
Other: Bentley's Number · Pigol · Egol · Phigol · gongol(plex) · kaboodol(plex) · gaz(illion)