11,586
pages

Bigrand Destruquaxul is equal to (...((200![200([200([200([200(200)200])200])200])200])![200([200([200([200(200)200])200])200])200])...)![200([200([200([200(200)200])200])200])200] (with Grand Destruquaxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on prefix "bi-" and the number "Grand Destruquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,4,202[1[1\neg200[1\neg200[1\neg200 \\ [1\neg202]200]200]200]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,4,202[1[1/200[1[1/200[1[1/200[1 \\ [1/201\sim2]200]2\sim2]200]2\sim2]200]2\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+199}}199)+200}^2 \\ (f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+199}}199)+199}(200))$$
Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}199)+199}}199)+199}}199)+199}}199)\times(\omega^{200}2+\omega^{199})}(200)$$