11,586
pages

Bigreat Grand Kilodestruxul is equal to (...((200![200(200)200(200)200(200)200])![200(200)200(200)200(200)200])![200(200)200(200)200(200)200]...)![200(200)200(200)200(200)200] (with Bigreat Kilodestruxul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on Latin prefix "bi-" and the number "Great Grand Kilodestruxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,3,201[1[1\neg202]200[1\neg202]200[1\neg202]200]2\} \\ ,201[1[1\neg202]200[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,3,201[1[1/201\sim2]200[1/201\sim2]200[1/201\sim2]200]2\} \\ ,201[1[1/201\sim2]200[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\theta(\Omega^{200},\theta(\Omega^{200}2,\theta(\Omega^{200}3,198)+199)+199)+200} \\ (f_{\theta(\Omega^{200},\theta(\Omega^{200}2,\theta(\Omega^{200}3,198)+199)+199)+199}^2(200))$$
Hardy hierarchy $$H_{\theta(\Omega^{200},\theta(\Omega^{200}2,\theta(\Omega^{200}3,198)+199)+199)\times(\omega^{200}+\omega^{199}2)}(200)$$
Slow-growing hierarchy $$g_{\theta(\Omega_2^{200}3+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,\theta_1(\Omega_2^{200}3,198)+199)+199)+200,} \\ _{\theta(\Omega_2^{200}3+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,\theta_1(\Omega_2^{200}3,198)+199)+199)+199,} \\ _{\vartheta(\Omega_2^{200}3+\theta_1(\Omega_2^{200},\theta_1(\Omega_2^{200}2,\theta_1(\Omega_2^{200}3,198)+199)+199)+199)))}(200)$$