11,586
pages

Bigreat Grand Megadestruquaxul is equal to (...((200![200([200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])! [200([200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])...)![200([200([200([200(200)200(200)200(200)200])200(200)200(200)200])200(200)200(200)200])200(200)200(200)200] (with Bigreat Megadestruquaxul parentheses) using Hyperfactorial array notation. The term was coined by Lawrence Hollom.[1]

### Etymology

The name of this number is based on Latin prefix "bi-" and the number "Great Grand Megadestruquaxul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,4,201[1[1\neg200[1\neg200[1\neg200[1\neg202]200[1\neg202]200 \\ [1\neg202]200]200[1\neg202]200[1\neg202]200]200[1\neg202]200 \\ [1\neg202]200]200[1\neg202]200[1\neg202]200]2\} \\ ,201[1[1\neg200[1\neg200[1\neg200[1\neg202]200[1\neg202]200[1\neg202]200] \\ 200[1\neg202]200[1\neg202]200]200[1\neg202]200[1\neg202]200] \\ 200[1\neg202]200[1\neg202]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,4,201[1[1/200[1[1/200[1[1/200[1[1/201\sim2]200[1/201\sim2] \\ 200[1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\sim2] \\ 200[1/201\sim2]200[1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2] \\ 200]2\},201[1[1/200[1[1/200[1[1/200[1[1/201\sim2]200[1/201\sim2]200 \\ [1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\sim2]200 \\ [1/201\sim2]200[1/201\sim2]200]2\sim2]200[1/201\sim2]200[1/201\sim2]200]2\}$$
Fast-growing hierarchy $$f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+200} \\ (f_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}^3(200))$$

where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$

Hardy hierarchy $$H_{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{\psi(\Omega^{\Omega^{200}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)+199}}\times\alpha)\times(\omega^{200}+\omega^{199}3)}(200)$$

where $$\alpha=\Omega^{\Omega^{200}2}199+\Omega^{\Omega^{200}}199+199$$