1024 | |||||||||
---|---|---|---|---|---|---|---|---|---|
All Numbers | |||||||||
1000 | 1001 | 1002 | 1003 | 1004 | 1005 | 1006 | 1007 | 1008 | 1009 |
1010 | 1011 | 1012 | 1013 | 1014 | 1015 | 1016 | 1017 | 1018 | 1019 |
1020 | 1021 | 1022 | 1023 | 1024 | 1025 | 1026 | 1027 | 1028 | 1029 |
1030 | 1031 | 1032 | 1033 | 1034 | 1035 | 1036 | 1037 | 1038 | 1039 |
1040 | 1041 | 1042 | 1043 | 1044 | 1045 | 1046 | 1047 | 1048 | 1049 |
1050 | 1051 | 1052 | 1053 | 1054 | 1055 | 1056 | 1057 | 1058 | 1059 |
1060 | 1061 | 1062 | 1063 | 1064 | 1065 | 1066 | 1067 | 1068 | 1069 |
1070 | 1071 | 1072 | 1073 | 1074 | 1075 | 1076 | 1077 | 1078 | 1079 |
1080 | 1081 | 1082 | 1083 | 1084 | 1085 | 1086 | 1087 | 1088 | 1089 |
1090 | 1091 | 1092 | 1093 | 1094 | 1095 | 1096 | 1097 | 1098 | 1099 |
A binary-guppyspeck is equal to 45 = 210 = 1,024.[1] The term was coined by Sbiis Saibian. This number belongs to the guppy regiment.
Aarex Tiaokhiao calls this number binary-doocol.[2]
Username5243 calls this number Binary-Goodcol, and it's equal to \(2[1]10\) in Username5243's Array Notation.[3]
Properties[]
- Its factors are 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024, making it a composite number.[4][5][6]
- 1024 is an even number[7][8].
- 1024 is an unhappy number.[9][10]
Approximations[]
Notation | Lower bound | Upper bound | |
---|---|---|---|
Up-arrow notation | 32 ↑ 2 | ||
Scientific notation | \(1.024\times10^3\) | \(1.025\times10^3\) | |
Slow-growing hierarchy | \(g_{\omega^{\omega}}(4)\) | \(g_{\omega^{\omega}}(5)\) | |
Copy notation | 10[2] | 1[4] | |
Chained arrow notation | 32 → 2 | ||
Bowers' Exploding Array Function/Bird's array notation | {32,2} | ||
Fast-growing hierarchy | f2(7) | f2(8) | |
Hardy hierarchy | Hω(512) | Hω(512) | |
Middle-growing hierarchy | m(ω,10) | m(ω,10) | |
Hyper-E notation | E3.0103 | ||
Hyper-E notation (non-10 base) | \(E[32]2\) | ||
Hyperfactorial array notation | 6! | 7! | |
X-Sequence Hyper-Exponential Notation | 32{1}2 | ||
Steinhaus-Moser Notation | 4[3] | 5[3] | |
PlantStar's Debut Notation | [1] | [2] | |
H* function | H(0) | H(0.1) | |
Bashicu matrix system with respect to version 4 | (0)[32] | (0)[32] |
Sources[]
- ↑ Saibian, Sbiis. Hyper-E Numbers. Retrieved 2016-07-18.
- ↑ Part 1 (LAN) - Aarex Googology[dead link]
- ↑ Part 1 - My Large Numbers
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is Binary-guppyspeck composite?
- ↑ Wolfram Alpha Binary-guppyspeck's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Is Binary-guppyspeck even?
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A016754 - Centered octagonal numbers
- ↑ OEIS A005100 - Deficient numbers