Googology Wiki
Advertisement
Googology Wiki

Mika2005CN Mika2005CN 5 minutes ago
0

I get exit code -1073741571 (0xC00000FD) when I calculating D(n)

In order to calculate D(n), I created a class named CompressInt, and I modified Naruyoko's D^6(9)(https://codegolf.stackexchange.com/a/197173

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 2 hours ago
0

نیسٹڈ ہائپر فیکٹوریل (چھوٹے گام2 فنکشن نوٹیشن میں تمام بنیادی باتوں کی تمام نظرثانی پر نظر ثانی جس کے بارے میں مجھے بہت افسوس ہے

(0|0|1) = psi(Ω_2)

(1|0|1) = psi(Ω_2)+1

(2|0|1) = psi(Ω_2)+2

(3|0|1) = psi(Ω_2)+3

((|0)|0|1) = psi(Ω_2)+w

(((|0)|0)|0|1) = psi(Ω_2)+w^w

((((|0)|0)|0)|0|1) = psi(Ω_2)+w^w^w

(((((|0)|0)|0)|0)|0|1) = psi(Ω_2)+w^w^w^w

((|1)|0|1) = psi(Ω_2)+psi(Ω)

((|2)|0|1) = psi(Ω_2)+psi(Ω^2)

((|3)|0|1) = psi(Ω_2)+psi(Ω^3)

((|{1}1)|0|1) = psi(Ω_2)+psi(Ω^Ω)


(0||1) = psi(Ω_2^psi1(Ω_2))

Read Full Post
AlexJN AlexJN 8 hours ago
0

stats of 100 randomly chosen numbers on the wiki

WIP


  • 1 By notation
  • 2 By coiner
  • 3 By class
  • 4 Generated numbers


  • Hyper-E - 5
  • Hyperfactorial Array - 2
  • Scientific - 2
  • Bird's Array - 1


  • Sbiis Saibian - 4
  • Lawrence Hollom - 2
  • Conway and Guy - 2
  • XRQ CORPORATION - 1
  • Douglas Shamlin Jr. - 1


  • Binary phi - 3
  • Bachmann's collapsing - 2
  • Class 2 - 2
  • Quadratic omega - 2
  • N/A - 1


  1. Duodecinongentillion
  2. Eneninto-tethracross
  3. Terrisecunded dustaculated-tethracross
  4. Bisuperior Grand Kiloenormabixul
  5. Flastretchemorgulus
  6. Thruelohgolpeta
  7. Kilo-BIGG
  8. Quattuordecitrecentillion
  9. Thraatagolhepta
  10. Tethrathoth-turreted-tethratopothoth
Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 16 hours ago
0

نیسٹڈ ہائپر فیکٹوریل (چھوٹے گاما1 فنکشن نوٹیشن میں تمام بنیادی باتوں کی تمام نظرثانی پر نظر ثانی جس کے بارے میں مجھے بہت افسوس ہے

(0|0|1) = psi(Ω_2)

(1|0|1) = psi(Ω_2)+1

(2|0|1) = psi(Ω_2)+2

(3|0|1) = psi(Ω_2)+3

((0|0|1)|0|1) = psi(Ω_2)2

((0|0|1)(0|0|1)|0|1) = psi(Ω_2)3

((0|0|1)(0|0|1)(0|0|1)|0|1) = psi(Ω_2)4

((0|0|1)!^(|0)|0|1) = psi(Ω_2)w

((0|0|1)!^((|0)|0)|0|1) = psi(Ω_2)w^w

((0|0|1)!^(((|0)|0)|0)|0|1) = psi(Ω_2)w^w^w

((0|0|1)!^((((|0)|0)|0)|0)|0|1) = psi(Ω_2)w^w^w^w

((0|0|1)!^(|1)|0|1) = psi(Ω_2)psi(Ω)

((0|0|1)!^(|2)|0|1) = psi(Ω_2)psi(Ω^2)

((0|0|1)!^(|{1}1)|0|1) = psi(Ω_2)psi(Ω^Ω)


({(0|0|1)}|0|1) = psi(Ω_2*psi(Ω_2))

({(0|0|1)}|0|1) = psi(Ω_2*psi(Ω_2*psi(Ω_2)))

({({(0|0|1)}|0|1)}|0|1) = psi(Ω_2*psi(Ω_2*psi(Ω_2*psi(Ω_2))))

({}|0|1) = psi(Ω_2*Ω)

Read Full Post
The Nikita123 The Nikita123 22 hours ago
0

roman numbers

i -

Read Full Post
Chonkersalad Chonkersalad 1 day ago
0

😡

ω * TREE(3) + BB(735) + 2

Read Full Post
Msiajoe74 Msiajoe74 1 day ago
0

Ascending Operator

I would like to introduce this AO(Ascending Operator) { }, vs. long established hyper-operator.


AO is right-associative. For natural numbers a, b and n:

  1. For n = 1,
    1. a{n}b = a{1}b = a+b
  2. For n > 1,
    1. a{n}1 = a
    2. a{n}b = a{n-1}[(a+1){n}(b-1)]


  1. 2{1}2 = 2+2 = 4
  2. 2{2}2 = 2{1}(3{2}1) = 2{1}3 = 2+3 = 5
  3. 2{3}3
    1. = 2{2}(3{3}2)
    2. = 2{2}(3{2}(4{3}1))
    3. = 2{2}3{2}4
    4. = 2{2}(3{1}4{1}5{1}6)
    5. = 2{2}(3+4+5+6)
    6. = 2{2}18
    7. = 2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19
    8. = 189
  4. 3{3}3
    1. = 3{2}(4{3}2)
    2. = 3{2}(4{2}(5{3}1))
    3. = 3{2}4{2}5
    4. = 3{2}(4{1}5{1}6{1}7{1}8)
    5. = 3{2}30
    6. = 3+4+ ... +31+32
    7. = 525
  5. 3{4}3
    1. = 3{3}4{3}5
    2. = 3{3}(4{2}5{2}6{2}7{2}8)
    3. = 3{3}(4{2}5{2}6{2}(7+8+9+10+11+12+13+14))
    4. = 3{3}(4{2}5{2}6{2}84)
    5. = 3{3}(4{2}5{2}(6+7+ ... +88+89))
    6. = 3{3}(4{2}5{2}3990)
    7. = 3{3}(4{2}(5+6+ ... +3993+3994))
    8. = 3{3}(4{2}7978005)
    9. ≈ 3{3}(3.182…



Read Full Post
AndyShow1000000 AndyShow1000000 1 day ago
0

Hierarchical Array Notation

Hierarchical Array Notation (HAN) is a notation created by AndyShow1000000. It is notated as {a,b,c}n.


=== Fundamental Hierarchical Array Notation (FHAN) (

Read Full Post
Xrjxj Xrjxj 1 day ago
0

New method

You need to start with the basic massif:

§(n)=n

§(n,2)=n^2

§(n,3)=n^3

§(n,1,2)=n^n

§(n,2,2)=n^n^2

§(n,1,3)=n^n^n

§(n,2,3)=n^n^n^2

§(n,1,4)=n^n^n^n

§(n,1,1,2)=n^^n

§(n,1,1,3)=n^^n^^n

§(n,1,1,1,2)=n^^^n

§(n,1,1,1,1,2)=n^^^^n

And now the most interesting β structures. All further extensions will be based on them.

Please note that β is an amplifical effect on the usual numbers.

β/n=§(n)=n

β^2/n=§(n,2)

β^3/n=§(n,3)

β^β/n=§(n,1,2)

β^β^2/n=§(n,1,3)

β^β^3/n=§(n,1,4)

β^β^β/n=§(n,1,1,2)=f3(n)

β^β^β^2/n=§(n,1,1,3)=f3(f3(n))

β^β^β^β/n=§(n,1,1,1,2)=f4(n)

β^β^β^β^β/n=§(n,1,1,1,1,2)=f5(n)

β^^β/n=fω(n)

β^^β^2/n=fω(fω(n))

β^^β^3/n=fω(fω(fω(n)))

β^^β^β/n=fω+1(n)

β^^β^β^β/n=fω+2(n)

β^^β^^β/n=fω*2(n)

β^^β^^β^β/n=fω*2+1(n)

β^^β^^β^^β/n=fω*3(n)

β^^^β/n=fω^2(n)

β^^^β^^^β/n=fω^2*2(n)

β^^^^β/n=fω^3…

Read Full Post
0

نیسٹڈ ہائپر فیکٹوریل (چھوٹے گاما) فنکشن نوٹیشن میں تمام بنیادی باتوں کی تمام نظرثانی پر نظر ثانی جس کے بارے میں مجھے بہت افسوس ہے

(|2) = psi(Ω^2)

(1|2) = psi(Ω^2)+1

(2|2) = psi(Ω^2)+2

(3|2) = psi(Ω^2)+3

((|1)|2) = psi(Ω^2)+psi(Ω)

((|2)|2) = psi(Ω^2)+psi(Ω^2)

((|2)(|2)|2) = psi(Ω^2)+psi(Ω^2)+psi(Ω^2)

((|2)!^(|0)|2) = psi(Ω^2)w

((|2)!^((|0)|0)|2) = psi(Ω^2)w^w

((|2)!^(((|0)|0)|0)|2) = psi(Ω^2)w^w^w

((|2)!^((((|0)|0)|0)|0)|2) = psi(Ω^2)w^w^w^w

((|2)!^(|1)|2) = psi(Ω^2)psi(Ω)

((|2)!^(|2)|2) = psi(Ω^2)psi(Ω^2)

((|2)!^(|2)|2) = psi(Ω^2+2)

((|2)!^((|2)!^(|2)|2)|2) = psi(Ω^2+3)

((|2)!^(((|2)!^(|2)|2)!^(|2)|2)|2) = psi(Ω^2+4)

((|2)!^((((|2)!^(|2)|2)!^(|2)|2)!^(|2)|2)|2) = psi(Ω^2+5)

((1|2)|2) = psi(Ω^2+w)

((2|2)|2) = psi(Ω^2+w+1)

((3|2)|2) = psi(Ω^2+w+2)

(((|0)|2)|2) = psi(Ω^2+w2)

((((|0)|0)|2)|2) = psi(Ω^2+w^2)

(((((|0)|0)|0)|2)|2) = psi(Ω^2+w^w^w)

((|1)|2)|2) = psi(Ω^2+psi(Ω))

((|2)|2)|2) = psi(Ω^…

Read Full Post
X0trewG X0trewG 2 days ago
0

Hyperotation (help me simplify the rules)

So this is a notation I call Hyperotation

Let me explain it to you as simply as I can but before that, I need to explain some terms:

  • [H] is called the Hyper Variable
  • [] are the Hyper Brackets

The Hyper Variable is equal to the value between the Hyper Brackets

for example: 8↑[10], here the hyper variable is 10, so if we would have written 8↑[H][10] then the hyper variable would be equal 10 so it would be equal to 8↑1010, however what we can make this even more complex. Because what happens when the Hyper Variable is between the Hyper Brackets, then the Hyper Variable would be still equal to the number between the hyper brackets but when we want to know how much is the Hyper Variable, we replace the Hyper Variable by ten. So [100↑[H]5]=={10,10,1…

Read Full Post
AlexJN AlexJN 3 days ago
0

Naive Oblivion

Define a function:

o[1]=The largest finite number that can be uniquely defined with no more than Kungulus symbols

o[n]=The largest finite number that can be uniquely defined with no more than o[n-1] symbols if n>1

o[n,m]=o[o[n,m-1],m-1]

o[#,m,k]=o[#,o[#,m-1,k],k-1]

o2[n]=o[n,n,...,n,n] with n entries

o3[n]=o2[n,n,...,n,n] with n entries

and so on

Naive Oblivion = ooo...oooOblivion[Oblivion,Oblivion,...,Oblivion,Oblivion] with Oblivion entries and Oblivion o's

Read Full Post
Cansasdraken Cansasdraken 3 days ago
2

Pondrance of Tetration

So a pondrance I had was this

Read Full Post
Dadutchboy3 Dadutchboy3 3 days ago
1

sequence of growth rates

[n] -> 2^(1+n) ~> 2^n

[n, 1] ~> 2^2^n

[n, a] ~> 2^^(1+a);n

[n, 0, 1] ~> 2^^(3+n);n ~> 2^^n

[n, 1, 1] ~> 2^^2^^n

[n, a, 1] ~> 2^^^(1+a);n

[n, 0, b] ~> 2[1+b]n

[n, 0, 0, 1] ~> 2[2+n]n ~> fω(n)

[n, 1, 0, 1] ~> fω+1(n)

[n, a, 0, 1] ~> fω+a(n)

[n, 0, 1, 1] ~> fω2(n)

[n, 1, 1, 1] ~> fω2(n)

[n, a, 1, 1] ~> fω2+ωa(n)

[n, 0, b, 1] ~> fωb(n)

[n, 0, 0, 2] ~> fωω(n)

[n, 1, 0, 2] ~> fωω+1(n)

[n, a, 0, 2] ~> fωω+a(n)

[n, 0, 1, 2] ~> fωω^ω(n)

[n, 1, 1, 2] ~> fωω^(ω+1)(n)

[n, a, 1, 2] ~> fωω^(ω+a)(n)

[n, 0, b, 2] ~> fω^^b(n)

[n, 0, 0, 3] ~> fε_0(n)

[n, 1, 0, 3] ~> fε_1(n)

[n, a, 0, 3] ~> fε_a(n)

[n, 0, 1, 3] ~> fε_ε_0(n)

[n, 1, 1, 3] ~> fε_ε_1(n)

[n, a, 1, 3] ~> fε_ε_a(n)

[n, 0, b, 3] ~> fω^^^b(n)

[n, 0, 0, c] ~> fφ_c(0)(n)

[n, 0, 0, 0, 1] ~> fφ_ω(0)(n)

[n, 1, 0, 0, 1] ~> fφ_(ω+1)(0)(n)

[n, a, 0, 0, 1] ~> fφ…

Read Full Post
Ilikedaveandbambi7 Ilikedaveandbambi7 4 days ago
1

Concept for notation

This is part of my in Clubsuit Notation & Grangol-tetrational-duadekal in my naming system.

AlexFJ defined this really well.

x club^n y = Ex{#^n}y

x club[2]^n y = Ex{#^^n}y

It can be assumed x club[m]^n y = Ex{#{m}n}y

I DONT KNOW ANYTHING AT ALL

Read Full Post
Kyodaisuu Kyodaisuu 5 days ago
0

Approximation of exponential factorial with tetration

We use the hyperfactorial array notation, where exponential factorial of n is expressed as n!1, and derive the approximation:

\(n!1 \approx 10\uparrow\uparrow (n-2.27876677830609945248)\) for \(n>5\)

By using Hypercalc BASIC


and we can confirm that n!1 has power-tower paradox for n≥6. This result can be rewritten with continuous tetration by

  • 1!1 = 1
  • 2!1 = 2
  • 3!1 = 9
  • 4!1 = 262144
  • 5!1 = 6.20606987866088 x 10 ^ 183230
  • 6!1 = 10^^3.72123322169390054751
  • 7!1 = 10^^4.72123322169390054751
  • 8!1 = 10^^5.72123322169390054751
  • 9!1 = 10^^6.72123322169390054751
  • 10!1 = 10^^7.72123322169390054751

and we get the approximation

\(n!1 \approx 10\uparrow\uparrow (n-2.27876677830609945248)\) for \(n>5\)

Read Full Post
AlexJN AlexJN 5 days ago
1

up arrow notation on crack

Define x↑1 as x+1, so for example 3↑1=4

Define x↑2 as ((...((x↑1)↑1)...)↑1)↑1 x times, so for example 3↑2=((3↑1)↑1)↑1=(4↑1)↑1=5↑1=6=2x

Define x↑3 as ((...((x↑2)↑2)...)↑2)↑2 x times, so for example 3↑3=((3↑2)↑2)↑2=(6↑2)↑2=12↑2=24=2^x*x

The pattern repeats. x↑y=fy(x) and x↑x=fw(x).

All other hyperoperations have the same rules.

x↑↑2=fw(x). 3↑↑3=3↑3↑3=3↑24=f24(3), 3↑↑4=3↑3↑3↑3=3↑3↑24=3↑f24(3)=ff_24(3)(3) and so on and so forth

3↑↑↑2=3↑↑3=f24(3), 3↑↑↑3=3↑↑3↑↑3=3↑↑f24(3)

n↑n=n↑nn

more ideas might be added later

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 5 days ago
0

زوٹ زوٹ پلیکس سے کہیں زیادہ اونچی سطح

Let

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 5 days ago
0

5. اگر مساوی کو مساوی میں شامل کیا جائے تو پورے برابر ہوتے ہیں۔5

(!^(2) |0|1) = psi(Ω_2*2+Ω)

(!^(2) |0|1) = psi(Ω_2*2+Ω^2)

(!^(2) |0|1) = psi(Ω_2*2+Ω^3)

(!^(2) |0|1) = psi(Ω_2*2+Ω^Ω)


(0|(0|0|1) |1) = psi(Ω_2^ psi(Ω_2))

(0|(0|(0|0|1)|1) |1) = psi(Ω_2^ psi(Ω_2^ psi(Ω_2)))

(0|(0|(0|(0|0|1)|1)|1) |1) = psi(Ω_2^ psi(Ω_2^ psi(Ω_2^ psi(Ω_2))))

(0||1) = psi(Ω_2^Ω)

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 6 days ago
0

4. اگر مساوی کو مساوی میں شامل کیا جائے تو پورے برابر ہوتے ہیں۔4

(0|0|1) = psi(Ω_2)

(1|0|1) = psi(Ω_2)+1

(2|0|1) = psi(Ω_2)+2

(3|0|1) = psi(Ω_2)+3

(4|0|1) = psi(Ω_2)+4

((|0)|0|1) = psi(Ω_2)+w

((0|0|1)|0|1) = psi(Ω_2)2

((0|0|1)(0|0|1)|0|1) = psi(Ω_2)3

((0|0|1)(0|0|1)(0|0|1)|0|1) = psi(Ω_2)4

((0|0|1)!^(|0)|0|1) = psi(Ω_2)w

((0|0|1)!^((|0)|0)|0|1) = psi(Ω_2)w^w

((0|0|1)!^(((|0)|0)|0)|0|1) = psi(Ω_2)w^w^w

((0|0|1)!^((((|0)|0)|0)|0)|0|1) = psi(Ω_2)w^w^w^w

((0|0|1)!^(|1)|0|1) = psi(Ω_2)psi(Ω)

((0|0|1)!^(|2)|0|1) = psi(Ω_2)psi(Ω^2)

((0|0|1)!^(|3)|0|1) = psi(Ω_2)psi(Ω^3)

((0|0|1)!^(|4)|0|1) = psi(Ω_2)psi(Ω^4)

((0|0|1)!^(|(|0))|0|1) = psi(Ω_2)psi(Ω^w)

((0|0|1)!^(|{1}1)|0|1) = psi(Ω_2)psi(Ω^Ω)


(|0|1) = psi(Ω_2+psi1(Ω_2)^psi(Ω_2))

(|0|1) = psi(Ω_2+psi1(Ω_2)^psi(Ω_2)^psi(Ω_2))

(!^(2)|0|1) = psi(Ω_2*2)

(1 !^(2)|0|1) = psi(Ω_2*2)+1 (tras…


Read Full Post
Xrjxj Xrjxj 6 days ago
0

The question of the side attachment


Can you explain with examples how the changing definition and lateral investment works? For example, how ε, S-σ works

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 6 days ago
0

گوگل ارتھ پروفیشنل کا استعمال کرتے ہوئے تقریباً زمین کا رداس تلاش کریں۔

فرض کریں کہ مبصر سے پہاڑ کا فاصلہ "a" ہے اور پہاڑ کی اونچائی "o" ہے اور مبصر کا زاویہ \(\theta\) ہے لہذا

یا صرف 44 کلومیٹر (معلوم نہیں ہے)

دوسرے تجربات کرنے کی ضرورت ہے

REMEMBER I AM NOT AN URDU SPEAKER, I JUST TRANSLATE ALL OF THIS USING GOOGLE TRANSLATE

Read Full Post
Xrjxj Xrjxj 6 days ago
1

Weak α function


I think it will be easier to analyze

sα[0]=1

sα[1]=ω

sα[2]=ω^ω

sα[3]=ω^ω^ω

sα[ω]=ε0

sα[ω+1]=ω^ε0+1

sα[ω+2]=ω^ω^ε0+1

sα[ω*2]=ε1

sα[ω*2+1]=ω^ε1+1

sα[ω*3]=ε2

sα[ω*4]=ε3

sα[ω^2]=εω

sα[ω^2+1]=ε(ω^ω)

sα[ω^2+2]=ε(ω^ω^ω)

sα[ω^2+ω]=ε(ε0)

sα[ω^2+ω+1]=ε(ω^ε0+1)

sα[ω^2+ω*2]=ε(ε1)

sα[ω^2*2]=ε(εω)

sα[ω^2*2+1]=ε(ε(ω^ω))

sα[ω^2*3]=ε(ε(εω))

sα[ω^2*4]=ε(ε(ε(εω)))

sα[ω^3]=ζ0

sα[ω^3+1]=ω^ζ0+1

sα[ω^3+2]=ω^ω^ζ0+1

sα[ω^3+ω]=ε(ζ0+1)

sα[ω^3+ω+1]=ε(ω^ζ0+1)

sα[ω^3+ω*2]=ε(ε(ζ0+1))

sα[ω^3+ω*3]=ε(ε(ε(ζ0+1)))

sα[ω^3+ω^2]=ζ1

sα[ω^3+ω^2+1]=ω^ζ1+1

sα[ω^3+ω^2+ω]=ε(ζ1+1)

sα[ω^3+ω^2*2]=ζ2

sα[ω^3+ω^2*3]=ζ3

sα[ω^3*2]=ζω

sα[ω^3*2+1]=ζ(ω^ω)

sα[ω^3*3]=ζ(ζω)

sα[ω^3*4]=ζ(ζ(ζω))

sα[ω^4]=η0

sα[ω^4*2]=ηω

sα[ω^5]=ψ(Ω^5)

sα[ω^6]=ψ(Ω^6)

sα[ω^ω]=ψ(Ω^ω)

sα[(ω^ω)+1]=ψ(Ω^ω^ω)

sα[(ω^ω)+2]=ψ(Ω^ω^ω^ω)

sα[(ω^ω)*2]=ψ(Ω^ψ(Ω^ω))

sα[(ω^ω)*3]=ψ(Ω…


Read Full Post
Chonkersalad Chonkersalad 7 days ago
0

&-23-Ś*

&-23-Ś* is equal to \############

Read Full Post
Chonkersalad Chonkersalad 7 days ago
0

List of array notation’s


  • Fast array notation
  • Graham Array Notation
  • Hyperfactorial array notation
  • Extended array notation
  • Ember Array Notation
  • Chained array notation
  • Strong array notation
  • Hyperdimensional Array Notation
  • Jazzy array notation
  • Quick array notation
  • Galaxy array notation
  • Almighty Array Notation
  • Hayden's Array Notation
  • ThaAwesome's Array Notation
  • DeepLineMadom's Array Notation
  • Rampant Array Notation
  • Stage array notation
  • Bird's array notation
Read Full Post
Nihilustheabsolutist Nihilustheabsolutist 7 days ago
1

what should this function name should be?

1-ag(n)= gag(N)

n-ag(n) = (n-1)ag^n(n)

This function is n-ag(n) therefore stronger for all larger n


F0(n) = Gag(n)

F1(n) = Gagn(n)

FM(N) = M-Ag(H)

Wainer hierarchies and others exist in this Just copy the definition of Fgh and replace F_0(N) = N+1 with F_0(N) = Gag(N)

Read Full Post
NooberRevival NooberRevival 7 days ago
0

NooberRevival's Average Notation

  • 1 Introduction
  • 2 Rules
  • 3 Extended Rules
  • 4 Naming System
  • 5 Examples


NooberRevival's Average Notation or NAN for short, is a notation created by NooberRevival. It is one of many notations made by NooberRevival.


NAN uses positive integers as entries, because for hyperoperators above exponentiation, it is ill-defined to have a non-integer value.

  • Rule 1: N[a] = a
  • Rule 2: N[a1,a2,a3,...,an,1] = N[a1,a2,a3,...,an]
    • Rule 2.1: N[a,1] ≠ N[a] but N[a,0] = N[a]
  • Rule 3: Let {0} be multiplication and {-1} be addition in BEAF, N[a1,a2,a3,...,an-1,an] = N[a1,a2,a3,...,(an-1){n-3}an,an-1]

In plain English:

  • Rule 1: If there is only one entry, then the value is the entry itself.
  • Rule 2 and 2.1: If the last entry is 1, it may be removed, except the second entry where it needs to be 0 to…



Read Full Post
Xrjxj Xrjxj 8 days ago
1

What is the speed of this function?


α[0]=(0)=1

α[1]=(0)(1)=ω

α[2]=(0)(1)(2)=ω^ω

α[3]=(0)(1)(2)(3)=ω^ω^ω

α[ω]=(0)(1,1)=ψ(Ω)

α[ω+1]=(0)(1,1)(2)=ψ(Ω*ω)

α[ω+2]=(0)(1,1)(2)(3)=ψ(Ω*ω^ω)

α[ω*2]=(0)(1,1)(2)(3,1)=ψ(Ω*ψ(Ω))

α[ω*2+1]=(0)(1,1)(2)(3,1)(4)=ψ(Ω*ψ(Ω*ω))

α[ω*3]=(0)(1,1)(2)(3,1)(4)(5,1)=ψ(Ω*ψ(Ω*ψ(Ω)))

α[ω^2]=(0)(1,1)(2,1)=ψ(Ω^2)

α[ω^2+1]=(0)(1,1)(2,1)(3)=ψ(Ω^ω)

α[ω^2+2]=(0)(1,1)(2,1)(3)(4)=ψ(Ω^ω^ω)

α[ω^2+ω]=(0)(1,1)(2,1)(3)(4,1)=ψ(Ω^ψ(Ω))

α[ω^2+ω*2]=(0)(1,1)(2,1)(3)(4,1)(5)(6,1)=ψ(Ω^ψ(Ω*ψ(Ω)))

α[ω^2*2]=(0)(1,1)(2,1)(3)(4,1)(5,1)=ψ(Ω^ψ(Ω^2))

α[ω^2*2+1]=(0)(1,1)(2,1)(3)(4,1)(5,1)(6)=ψ(Ω^ψ(Ω^ω))

α[ω^2*3+1]=(0)(1,1)(2,1)(3)(4,1)(5,1)(6)(7,1)(8,1)(9)=ψ(Ω^ψ(Ω^ψ(Ω^ω)))

α[ω^3]=(0)(1,1)(2,1)(3,1)=ψ(Ω^Ω)

α[ω^3+1]=(0)(1,1)(2,1)(3,1)(4)=ψ(Ω^Ω^ω)

α[ω^3*2]=(0)(1,1)(2,1)(3,1)(4)(5,1)(6,1)(7,1)=ψ(Ω^Ω^ψ(Ω^Ω))

α[ω…


Read Full Post
AlexJN AlexJN 8 days ago
0

LSN growth estimates

Special thanks to Sho Phuane

s1(x)=f0(x)

s2(x)=f1(x)

s2(x,x) around f2(x)

s3(x) around f3(x)

s3(x,x) around f4(x)

s3(x,x,x) around fw(x)

s4(x) around fw+1(x)

s4(x,x) around fw+2(x)

s4(x,x,x) around fw2(x)

s4(x,x,x,x) around fw2+1(x)

sn(x,...,x) around fw^w(n)

Read Full Post
Xrjxj Xrjxj 9 days ago
0

C-like function with a "shift" for 2


(0,0)=1

(0,(0,0))=2

(1,0)=ω

(1,1)=ω+1

(1,(1,0))=ω*2

(2,0)=ω^2

((1,0),0)=ω^ω

(((1,0),0),0)=ω^ω^ω

•((Ω,0),0)=ψ(Ω)

((Ω,0),1)=ψ(Ω)+1

((Ω,0),((Ω,0),0))=ψ(Ω)+ψ(Ω)

((Ω,1),0)=ψ(Ω+1)

((Ω,2),0)=ψ(Ω+2)

((Ω,((Ω,0),0)),0)=ψ(Ω+ψ(Ω))

((Ω,((Ω,((Ω,0),0)),0)),0)=ψ(Ω+ψ(Ω+ψ(Ω)))

((Ω,(Ω,0)),0)=ψ(Ω*2)

((Ω,(Ω,(Ω,0))),0)=ψ(Ω*3)

((Ω+1,0),0)=ψ(Ω*ω)

((Ω+2,0),0)=ψ(Ω*ω^2)

((Ω+((Ω,0),0),0),0)=ψ(Ω*ψ(Ω))

((Ω+((Ω+((Ω,0),0),0),0),0),0)=ψ(Ω*ψ(Ω*ψ(Ω)))

((Ω+(Ω,0)),0)=ψ(Ω^2)

((Ω+(Ω+(Ω,0)),0)),0)=ψ(Ω^3)

((Ω*2,0),0)=ψ(Ω^ω)

((Ω*2,1),0)=ψ((Ω^ω)+1)

((Ω*2,((Ω*2,0),0)):0)=ψ((Ω^ω)+ψ(Ω^ω))

((Ω*2,(Ω,0)),0)=ψ((Ω^ω)+Ω)

((Ω*2,(Ω*2,0)),0)=ψ(Ω^ω)*2)

((Ω*2+1,0),0)=ψ((Ω^ω)*ω)

((Ω*2+(Ω,0),0),0)=ψ(Ω^ω+1)

((Ω*2+(Ω,(Ω,0)),0),0)=ψ(Ω^ω+2)

((Ω*2+(Ω*2,0),0),0)=ψ(Ω^ω*2)

((Ω*3,0),0)=ψ(Ω^ω^2)

((Ω*4,0),0)=ψ(Ω^ω^3)

((Ω*ω,0),0)=ψ(Ω^ω^ω)

((Ω*…


Read Full Post
NooberRevival NooberRevival 9 days ago
0

List of Numbers

  • 1 Introduction
  • 2 Counting Era (0 - 7.5 × 108)
  • 3 Exponential Era (109 - 109×109+3 )
  • 4 Tetrational Era (101010 - 10^^900,000):
  • 5 Knuth Arrow Era (10^^1,000,000 - 10^^10^^1,000,000,000):


This is a list of numbers from 0 to unimaginably large numbers.

Please note that this list only includes natural numbers and transfinite numbers. This list also include some numbers/googolisms that isn't in the "List of googolisms" pages but made by my (limited) knowledge.

Credits: douglasshamlinjr.392 on YouTube and various wiki pages.


Subitizing Range (0 - 6):

  • Zero | 0
  • One | 1
  • Two | 2
  • Three | 3
  • Four | 4
  • Five | 5
  • Six | 6

Palpable Range (7 - 9):

  • Seven | 7
  • Eight | 8
  • Nine | 9

Tens Range (10 - 99):

  • Ten | 10
  • Eleven | 11
  • Twelve | 12
  • Thirteen | 13
  • Fourteen | 14
  • Fifteen | 15
  • Sixteen | 16
  • Seventeen | 1…



Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 9 days ago
1

fandomical monkey unicodic number

imagine a monkey sitting on a very large keyboard, which contains all unicode characters version 16.0 with a total of 155,063 characters with code points, covering 168 modern and historical scripts, as well as multiple symbol sets. then the monkey walks randomly and every monkey touches 1 unicode key then the output will appear on a large printer that prints every character stepped on by the monkey

what is the possibility that the monkey can be able to write all the pages in the googologywiki at this 27 september 2024 00:00 UTC based on its source code, this includes templates, image information, warnings, user talk, user blog comments, GeoJSON, modules, policies from googology wiki, user pages, and most importantly blogposts, that means th…

Read Full Post
AdamMiodek AdamMiodek 9 days ago
2

Help with making a website to source my stuff

So I've came up with a new notation system, and wanted to make a page on here, however I have to make first an external source, a.k.a. my own website or something.

The thing is, I would need some help on how to form the website so that it doesn't look like a random dump of numbers and symbols.

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 10 days ago
0

poly-multi-adic factorial type 6

For type 6 here, the definition is actually very simple and perhaps the slowest growing, this number combines factorial with triangular numbers such as 1+2+3+4+5+..., this series can be simplified to

Read Full Post
AlexJN AlexJN 10 days ago
0

balls regiment


), Balls Hyperexploder

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 10 days ago
0

3. اگر مساوی کو مساوی میں شامل کیا جائے تو پورے برابر ہوتے ہیں۔3

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 10 days ago
0

poly-multi-adic factorial type

poly-multi-adic factorial is a type of function that uses the results of the product or combination of the product and sum that comes from factorial or different, some functions produce properties of functions that are not complicated enough, there are also functions that produce factorial at the end, these functions all use the letter gamma, there are several types here


for type 1 inspired by nth order polynomials, meaning each term is added, examples of polynomial equations of each order see below

order 0, \(a\)

order 1, \(ax+b\) This is the equation for a line and will output the shape of the line

order 2, \(ax^2+bx+c\) This is quadratic equation and will make a parabola

order 3, \(ax^3+bx^2+cx+d\)

order 4, \(ax^4+bx^3+cx^2+dx+e\)

This means t…


Read Full Post
Xrjxj Xrjxj 11 days ago
0

Xsan part lV


expected limit-ψ(Μ_2)

(1(1~2)2)=ψ(Ω(1,0))

(1(1~2)(1)2)=ψ(Ω(1,0)+1)

(1(1~2)(1(1~2)(1)2)2)=ψ(Ω(1,0)+ψ(Ω(1,0)+1))

(1(1~2)(1-2)2)=ψ(Ω(1,0)+Ω)

(1(1~2)(1(1-2-)2)2)=ψ(Ω(1,0)+Ω_Ω)

(1(1~2)(1(1(1-2-)2-)2)2)=ψ(Ω(1,0)+Ω_Ω_Ω)

(1(1~2)(1(1~2-)2)2)=ψ(Ω(1,0)+Ω(Ω(1,0)))

(1(1~2)(2(1~2-)2)2)=ψ(Ω(1,0)+Ω(Ω(1,0))+1))

(1(1~2)(1(1~2-)3)2)=ψ(Ω(1,0)+Ω(Ω(1,0))+Ω(Ω(1,0)))

(1(1~2)(1(1~2-)(1)2)2)=ψ(Ω(1,0)+Ω(Ω(1,0)+1))

(1(1~2)(1(1~2-)(1-2)2)2)=ψ(Ω(1,0)+Ω(Ω(1,0)+Ω))

(1(1~2)(1(1~2-)(1(1~2-)2)2)2)=ψ(Ω(1,0)+Ω(Ω(1,0)+Ω(Ω(1,0))))

(1(2~2)2)=ψ(Ω(1,0)*2)

(1(3~2)2)=ψ(Ω(1,0)*3)

(1(1,2~2)2)=ψ(Ω(1,0)*ω)

(1(1-2~2)2)=ψ(Ω(1,0)*Ω)

(1(1(1-2-)2~2)2)=ψ(Ω(1,0)*Ω_Ω)

(1(1(1~2-)2~2)2)=ψ(Ω(1,0)*Ω(Ω(1,0)))

(1(1(1(1~2-)2~2-)2~2)2)=ψ(Ω(1,0)*Ω(Ω(1,0)*Ω(Ω(1,0))))

(1(1~3)2)=ψ(Ω(1,0)^2)

(1(1~4)2)=ψ(Ω(1,0)^3)

(1(1~(1)2)2)=ψ(…


Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 12 days ago
0

2. اگر مساوی کو مساوی میں شامل کیا جائے تو پورے برابر ہوتے ہیں۔2

(|4) =psi(Ω^4)

(|5) =psi(Ω^5)

(|6) =psi(Ω^6)

(|7) =psi(Ω^7)

(|8) =psi(Ω^8)

(|(|0)) =psi(Ω^w)

(|((|0)|0)) =psi(Ω^w^w)

(|(((|0)|0)|0)) =psi(Ω^w^w^w)

(|((((|0)|0)|0)|0)) =psi(Ω^w^w^w^w)

(|(|1)) =psi(Ω^psi(Ω))

(|((|0)|1)) =psi(Ω^psi(Ω+w))

(|(((|0)|0)|1)) =psi(Ω^psi(Ω+w^w))

(|((((|0)|0)|0)|1)) =psi(Ω^psi(Ω+w^w^w))

(|(((((|0)|0)|0)|0)|1)) =psi(Ω^psi(Ω+w^w^w^w))

(|((|1)|1)) =psi(Ω^psi(Ω+psi(Ω)))

(|(((|1)|1)|1)) =psi(Ω^psi(Ω+psi(Ω+psi(Ω))))

(|((((|1)|1)|1)|1)) =psi(Ω^psi(Ω+psi(Ω+psi(Ω+psi(Ω)))))

(|{1}1) = psi(Ω^Ω) (Feferman–Schütte ordinal)

(|{1}2) =psi(Ω^Ω+1)

(|{1}3) =psi(Ω^Ω+2)

(|{1}4) =psi(Ω^Ω+3)

(|{1}5) =psi(Ω^Ω+5)

(|{1}(|0)) =psi(Ω^Ω+w)

(|{1}((|0)|0)) =psi(Ω^Ω+w^w)

(|{1}(((|0)|0)|0)) =psi(Ω^Ω+w^w^w)

(|{1}((((|0)|0)|0)|0)) =psi(Ω^Ω+w^w^w^w)

(|{1}(|1)) =psi(Ω^Ω+psi(Ω))

(|…

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 12 days ago
0

لوريم اڤسوم دولور سیت امیت، کونسکتور ادیڤیسکیڠ يليت، سيد دو یاسمود تيمڤور آنکیددونت اوت لابوری ايت دولوری مڬنا علیقوا.

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 12 days ago
0

ٹیٹریشنل چوتھا کثیر الثانی بطور ایک نئی فیکٹریل شکل

Tetronomial is a higher level of polynomial, polynomial uses exponents, coefficients and variables, exponents use exponentiation, coefficients use multiplication and each term is added using addition

but tetronomial is higher again, each term is separated by multiplication and coefficients use exponentiation, the variables are tetramed with certain numbers, an example of tetronomial is

Read Full Post
Kyodaisuu Kyodaisuu 13 days ago
1

Full decimal expansion of super-leviathan

Full decimal expansion of super-leviathan = \(9^{9^{9}}\) was calculated with . It has 369,693,100 digits.

  • 999.zip (171MB, )

First 100 digits


Last 100 digits

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 13 days ago
0

a hard coercion for nested hyperfactorial (small gamma) functions, PART IIIb

now I want to revise all of this, remember that the power tower \(\varepsilon_0\) is already represented by nesting brackets so we don't need to align it with the buchholz ocf, this nesting brackets represents the summation in the buchholz ocf, but then there is also an inner multiplication in the buchholz ocf like \(\psi(\Omega \alpha)\) where \(\alpha\) is an ordinal, this multiplication corresponds to the subscript in \(\varepsilon_{\alpha}\), this is the gateway to \(\zeta_0\), if we know the concept we will be able to continue

to solve this problem, curly brackets will be made in the left space signs such as {}|, the brackets should be curly brackets, meaning that it requires special care when writing in mathjax, the {}| sign is filled…

Read Full Post
Tamatak 'v chamatak ki Tamatak 'v chamatak ki 13 days ago
0

cosecant quectoradian

cosecant quectoradian is a number that is hypothesized as an irrational number although I have not proven it, this number is a fairly large number that is comparable to nonillion but even so this number is still very small when compared to other googolisms and is still in the lowest googology class 2,

because radians are derived international units that have dimensions \(L^0\) or 0, then this unit also has an SI prefix just like other units in SI, although radians cannot be greater than \(2\pi\) because it will return to the beginning but prefixes such as deciradian, centiradian and milliradian are possible, so that means we can make cosecant quectoradian or \(\mathsf{csc(10^{-30} \ rad)}\)

in the madhava series, this number can be written a…

Read Full Post
AlexJN AlexJN 13 days ago
0

my extended operation names


WIP

Bolded entries are not created by me.


Every negative hyperoperation is the same but with In- added to the start. Here are a few examples though.

-6th hyperoperation (\(\sqrt[S,y]{x}\)): Inhexation aka. Yth super-root

-5th hyperoperation (\(\sqrt[y]{x}\)): Inpentation aka. Yth root

-4th hyperoperation (x/y): Intetration aka. Division

-3rd hyperoperation (x-y): Intrination aka. Subtraction

-2nd hyperoperation (x-1): Indunation aka. Predecessor function aka. Predecessation

-1st hyperoperation (x=x): Inmonation aka. Nullation


0th hyperoperation (x+1): Nilation aka. Successor function aka. Successation

1st hyperoperation (x+y): Monation aka. Addition

2nd hyperoperation (x*y): Dunation aka. Multiplication

3rd hyperoperation (x^y): Trination aka. Exponentiation

4th …




Read Full Post
Nihilustheabsolutist Nihilustheabsolutist 13 days ago
1

\(\alpha\) Function

\(\alpha\) (N) = Fnth limit ordinal(N)

Read Full Post
Chonkersalad Chonkersalad 14 days ago
0

List of hierarchy’s

  1. Chronolegend's Shrinking Hierarchy
  2. Inching Hierarchy
  3. Slower Growing Hierarchy
  4. SO-Growing-Hierarchy
  5. Slow-growing hierarchy
  6. Eszett Hierarchy
  7. X Hierarchy
  8. Hardy hierarchy
  9. Reptend hierarchy
  10. Binomial coefficient hierarchy
  11. User blog:WaxPlanck/Hyper Operator Hierarchy
  12. Factorial-growing hierarchy (Guess)
  13. Notation hierarchy
  14. Bowers’ Hierarchy
  15. N-growing hierarchy
  16. Middle-growing hierarchy
  17. Moderate-growing hierarchy
  18. Extreme-Growing Hierarchy
  19. Ultra-Growing Hierarchy
  20. LimeLemon192/Hyper-Hierarchy (IDK)
  21. Super-Growing Hierarchy
  22. Mahlo hierarchy (idk)
  23. User blog:Undeadlift/Very Fast Growing Hierarchy (guess)
  24. User blog:Polymations/Arrow Hierarchy (idk)
  25. Fast-growing hierarchy
  26. Continous Fast Growing Hierarchy
  27. Quick-growing hierarchy
  28. Hyper Hierarchy
  29. Array hierarchy
  30. Extended array hierarchy
  31. Hype…
Read Full Post
Nihilustheabsolutist Nihilustheabsolutist 14 days ago
0

Mario’s number

Mario’s number is equal to 22^333^4444^55555^666666^7777777^88888888^999999999 = Mario


{Mario,Mario,Mario,Mario,(Mario,72)Mario} = Luigi number


RayoLuigi number(Luigi number (Mario) = Mario number

Read Full Post
Ic0c-wikis Ic0c-wikis 14 days ago
1

TRI function or Pyramid function

TRIANGLE/PYRAMID function

TRI(1) = 1 TRI(2) = 2²2 = ⁴2 = 65536

3 3 3

TRI(3) = 3 3 = 7.6trillion penetrated to 2 ..... TRI(n) = n pentrated to n-1 tetrated to n tetrated to n

Read Full Post
Ic0c-wikis Ic0c-wikis 14 days ago
0

how large is this number? (2VP6/VP(VP6)

VP number VP(VP6)

vp⁶ = vp^6 = 6[6]5[6]4[6]3[6]2[6]1

⁶vp = vp↑↑6 = vp^(vp^(vp^(vp^(vp^(vp^(vp^6))))))

₆vp = vp↑↑↑6 = vp↑↑(vp↑↑(vp↑↑(vp↑↑(vp↑↑(vp↑↑vp)))))

vp₆ = vp↑↑↑↑6 = vp↑↑↑(vp↑↑↑(vp↑↑↑(vp↑↑↑(vp↑↑↑(vp↑↑↑vp))))) = 4(vp)6

VP6 = vp₆(vp)6

vpⱽᴾ⁶ = VP6[VP6]VP6 -1.....[VP6]1

ⱽᴾ⁶vp = vp^vp^vp^vp.....^VP6

                   (VP6 times. )

ᵥₚ₆vp = vp↑↑vp↑↑vp↑↑vp.......↑↑VP6

                    (VP6 times.             )

VPᵥₚ₆ = vp↑↑↑vp↑↑↑vp.....↑↑↑6

                        (VP6 times.     ) = 4(vp)VP6

VP(VP6) = VPᵥₚ₆(vp)VP6

Read Full Post

Advertisement