| 3520 | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| All Numbers | |||||||||
| 3500 | 3501 | 3502 | 3503 | 3504 | 3505 | 3506 | 3507 | 3508 | 3509 |
| 3510 | 3511 | 3512 | 3513 | 3514 | 3515 | 3516 | 3517 | 3518 | 3519 |
| 3520 | 3521 | 3522 | 3523 | 3524 | 3525 | 3526 | 3527 | 3528 | 3529 |
| 3530 | 3531 | 3532 | 3533 | 3534 | 3535 | 3536 | 3537 | 3538 | 3539 |
| 3540 | 3541 | 3542 | 3543 | 3544 | 3545 | 3546 | 3547 | 3548 | 3549 |
| 3550 | 3551 | 3552 | 3553 | 3554 | 3555 | 3556 | 3557 | 3558 | 3559 |
| 3560 | 3561 | 3562 | 3563 | 3564 | 3565 | 3566 | 3567 | 3568 | 3569 |
| 3570 | 3571 | 3572 | 3573 | 3574 | 3575 | 3576 | 3577 | 3578 | 3579 |
| 3580 | 3581 | 3582 | 3583 | 3584 | 3585 | 3586 | 3587 | 3588 | 3589 |
| 3590 | 3591 | 3592 | 3593 | 3594 | 3595 | 3596 | 3597 | 3598 | 3599 |
Bree is equal to 3,520.[1]
It also appears in the Göbel's sequence.
Properties[]
- Its factors are 1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 32, 40, 44, 55, 64, 80, 88, 110, 160, 176, 220, 320, 352, 440, 704, 880, 1760 and 3520, making it a composite number.[2][3][4]
- 3520 is an even number[5] .
- 3520 is an unhappy number.[6][7]
- 3520 is abundant.[8]
- Its prime factorization is 26 × 51 × 111.
- 3520 is a Harshad number, meaning it is divisible by the sum of its digits.[9]
Approximations[]
| Notation | Lower bound | Upper bound | |
|---|---|---|---|
| Up-arrow notation | 59 ↑ 2 | ||
| Scientific notation | 3.52 x 103 | 3.521 x 103 | |
| Slow-growing hierarchy | \(g_{\omega^{\omega}}(5)\) | \(g_{\omega^{\omega}}(6)\) | |
| Copy notation | 34[2] | 35[2] | |
| Chained arrow notation | 59 → 2 | ||
| Bowers' Exploding Array Function/Bird's array notation | {59,2} | ||
| Fast-growing hierarchy | f2(8) | f2(9) | |
| Hardy hierarchy | Hω(1760) | Hω(1760) | |
| Middle-growing hierarchy | m(ω,11) | m(ω,12) | |
| Hyper-E notation | E3.5465 | ||
| Hyper-E notation (non-10 base) | \(E[59]2\) | ||
| Hyperfactorial array notation | 6! | 7! | |
| X-Sequence Hyper-Exponential Notation | 59{1}2 | ||
| Steinhaus-Moser Notation | 5[3] | 6[3] | |
| PlantStar's Debut Notation | [2] | [3] | |
| H* function | H(0.1) | H(0.2) | |
| Bashicu matrix system with respect to version 4 | (0)[59] | (0)[60] | |
| m(n) map | m(1)(5) | m(1)(6) | |
| s(n) map | \(s(1)(\lambda x . x+1)(1759)\) | \(s(1)(\lambda x . x+1)(1760)\) | |
Sources[]
- ↑ Dominissimo Retrieved 2025-01-21.
- ↑ OEIS A002808 - Composite numbers
- ↑ Wolfram Alpha Is Bree composite?
- ↑ Wolfram Alpha Bree's factors
- ↑ OEIS A005843 - Even numbers
- ↑ Wolfram Alpha Unhappy Numbers
- ↑ OEIS A031177 - Unhappy Numbers
- ↑ OEIS A005101 - Abundant numbers
- ↑ OEIS A005349 - Harshad numbers