Deux superhex is equal to \(\{6,6,6,6,6,6(1)6,6,6,6,6,6\}=\{6,6(1)(1)2\}\) in BEAF.[1] The term was coined by ARsygo.
Approximations[]
Notation | Approximation |
---|---|
Bird's array notation | \(\{6,6,6,6,6,6[2]6,6,6,6,6,6\}\) (exact) |
Cascading-E notation | \(\text{E}[6]6\#\text{^}\#\text{*}\#\text{^}\#6\) |
DeepLineMadom's Array Notation | \(6[7,6,6,6\{2\}6,6,6,6,6,6]6\) |
X-Sequence Hyper-Exponential Notation | \(6\{5X^{X+5}+6X^{X+4}+6X^{X+3}+6X^{X+2}+6X^{X+1}+6X^{X}+6X^2+7X\}6\) |
Fast-growing hierarchy | \(f_{\omega^{\omega+5}5+\omega^{\omega+4}6+\omega^{\omega+3}6+\omega^{\omega+2}6+\omega^{\omega+1}6+\omega^{\omega}6+\omega^2 6+\omega7}(6)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega+5}5+\omega^{\omega+4}6+\omega^{\omega+3}6+\omega^{\omega+2}6+\omega^{\omega+1}6+\omega^{\omega}6+\omega^2 6+\omega7}}(6)\) |
Slow-growing hierarchy (with this system of fundamental sequences) | \(g_{\psi_0(\Omega^{\Omega^{\Omega+5}5+\Omega^{\Omega+4}6+\Omega^{\Omega+3}6+\Omega^{\Omega+2}6+\Omega^{\Omega+1}6+\Omega^{\Omega}6+\Omega^2 6+\Omega7})}(6)\) |
Sources[]
- ↑ AR Googol - Numbers from BEAF. Retrieved 2024-09-06.