Deux superogd is equal to \(\{8,8,8,8,8,8,8,8(1)8,8,8,8,8,8,8,8\}=\{8,8(1)(1)2\}\) in BEAF.[1] The term was coined by ARsygo.
Approximations[]
Notation | Approximation |
---|---|
Bird's array notation | \(\{8,8,8,8,8,8,8,8[2]8,8,8,8,8,8,8,8\}\) (exact) |
Cascading-E notation | \(\text{E}[8]8\#\text{^}\#\text{*}\#\text{^}\#8\) |
DeepLineMadom's Array Notation | \(8[9,8,8,8,8,8\{2\}8,8,8,8,8,8,8,8]8\) |
X-Sequence Hyper-Exponential Notation | \(8\{7X^{X+7}+8X^{X+6}+8X^{X+5}+8X^{X+4}+8X^{X+3}+8X^{X+2}+8X^{X+1}+8X^{X}+8X^2+9X\}8\) |
Fast-growing hierarchy | \(f_{\omega^{\omega+7}7+\omega^{\omega+6}8+\omega^{\omega+5}8+\omega^{\omega+4}8+\omega^{\omega+3}8+\omega^{\omega+2}8+\omega^{\omega+1}8+\omega^{\omega}8+\omega^2 8+\omega9}(8)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega+7}7+\omega^{\omega+6}8+\omega^{\omega+5}8+\omega^{\omega+4}8+\omega^{\omega+3}8+\omega^{\omega+2}8+\omega^{\omega+1}8+\omega^{\omega}8+\omega^2 8+\omega9}}(8)\) |
Slow-growing hierarchy (with this system of fundamental sequences) | \(g_{\psi_0(\Omega^{\Omega^{\Omega+7}7+\Omega^{\Omega+6}8+\Omega^{\Omega+5}8+\Omega^{\Omega+4}8+\Omega^{\Omega+3}8+\Omega^{\Omega+2}8+\Omega^{\Omega+1}8+\Omega^{\Omega}8+\Omega^2 8+\Omega9})}(8)\) |
Sources[]
- ↑ AR Googol - Numbers from BEAF. Retrieved 2024-09-10.