Deux superpent is equal to \(\{5,5,5,5,5(1)5,5,5,5,5\}=\{5,5(1)(1)2\}\) in BEAF.[1] The term was coined by ARsygo.
Approximations[]
Notation | Approximation |
---|---|
Bird's array notation | \(\{5,5,5,5,5[2]5,5,5,5,5\}\) (exact) |
Cascading-E notation | \(\text{E}[5]5\#\text{^}\#\text{*}\#\text{^}\#5\) |
DeepLineMadom's Array Notation | \(5[6,5,5\{2\}5,5,5,5,5]5\) |
X-Sequence Hyper-Exponential Notation | \(5\{4X^{X+4}+5X^{X+3}+5X^{X+2}+5X^{X+1}+5X^{X}+4X^2+6X\}5\) |
Fast-growing hierarchy | \(f_{\omega^{\omega+4}4+\omega^{\omega+3}5+\omega^{\omega+2}5+\omega^{\omega+1}5+\omega^{\omega}5+\omega^2 4+\omega6}(5)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega+4}4+\omega^{\omega+3}5+\omega^{\omega+2}5+\omega^{\omega+1}5+\omega^{\omega}5+\omega^2 4+\omega6}}(5)\) |
Slow-growing hierarchy (with this system of fundamental sequences) | \(g_{\psi_0(\Omega^{\Omega^{\Omega+4}4+\Omega^{\Omega+3}5+\Omega^{\Omega+2}5+\Omega^{\Omega+1}5+\Omega^{\Omega}5+\Omega^2 4+\Omega6})}(5)\) |
Sources[]
- ↑ AR Googol - Numbers from BEAF. Retrieved 2024-09-04.