- Not to be confused with dohectillion.
Duehectillion is equal to \(10^{3\cdot10^{306} + 3}\).[1] It is defined using Sbiis Saibian's generalization of Jonathan Bowers' -illion system.
Approximations
Notation | Lower bound | Upper bound |
---|---|---|
Arrow notation | \(1000\uparrow(1+10\uparrow306)\) | |
Down-arrow notation | \(1000\downarrow\downarrow103\) | \(281\downarrow\downarrow126\) |
Steinhaus-Moser Notation | 141[3][3] | 142[3][3] |
Copy notation | 2[2[307]] | 3[3[307]] |
H* function | H(H(101)) | |
Taro's multivariable Ackermann function | A(3,A(3,1016)) | A(3,A(3,1017)) |
Pound-Star Notation | #*((1))*((1))*9 | #*((1))*((2))*9 |
BEAF | {1000,1+{10,306}} | |
Hyper-E notation | E(3+3E306) | |
Bashicu matrix system | (0)(1)[31] | (0)(1)[32] |
Hyperfactorial array notation | (168!)! | (169!)! |
Fast-growing hierarchy | \(f_2(f_2(1009))\) | \(f_2(f_2(1010))\) |
Hardy hierarchy | \(H_{\omega^22}(1009)\) | \(H_{\omega^22}(1010)\) |
Slow-growing hierarchy | \(g_{\omega^{\omega^{\omega^23+6}3+3}}(10)\) |