11,689
pages

The faxul is equal to 200!, where ! denotes the factorial.[1] The term was coined by Lawrence Hollom. It is 375 digits long.

The full decimal expansion is shown below:

788657867364790503552363213932185062295135977687173263294742533244359449963403342920304284011984623904177212138919638830257642790242637105061926624952829931113462857270763317237396988943922445621451664240254033291864131227428294853277524242407573903240321257405579568660226031904170324062351700858796178922222789623703897374720000000000000000000000000000000000000000000000000

## Etymology

The name of this number appears to be a mix of "factorial" and googol.

## Approximations in other notations

Notation Lower bound Upper bound
Scientific notation $$7.886\times10^{374}$$ $$7.887\times10^{374}$$
Arrow notation $$94\uparrow190$$ $$11\uparrow360$$
Steinhaus-Moser Notation 168[3] 169[3]
Copy notation 7[375] 8[375]
Chained arrow notation $$94→190$$ $$11→360$$
Taro's multivariable Ackermann function A(3,1242) A(3,1243)
Pound-Star Notation #*((566))*12 #*((567))*12
PlantStar's Debut Notation [222] [223]
BEAF {94,190} {11,360}
Hyper-E notation 7E374 8E374
Bashicu matrix system (0)(0)(0)(0)(0)(0)(0)[848] (0)(0)(0)(0)(0)(0)(0)[849]
Bird's array notation {94,190} {11,360}
Fast-growing hierarchy $$f_2(1\,235)$$ $$f_2(1\,236)$$
Hardy hierarchy $$H_{\omega^2}(1\,235)$$ $$H_{\omega^2}(1\,236)$$
Slow-growing hierarchy $$g_{\omega^{\omega \times 7+15}22}(33)$$ $$g_{\omega^{\omega \times 2+16}36}(88)$$