The Feferman–Schütte ordinal, commonly denoted by \(\Gamma_0\)[1][2] (pronounced "gamma-nought"), is the first ordinal unreachable through the two-argument Veblen hierarchy. Formally, it is the first fixed point of \(\alpha \mapsto \varphi_{\alpha}(0)\), visualized as \(\varphi_{\varphi_{\varphi_{._{._..}.}(0)}(0)}(0)\) or \(\varphi(\varphi(\varphi(...),0),0),0)\), where \(\varphi\) denotes the Veblen function. It's named after Solomon Feferman and Kurt Schütte. A common fundamental sequence of \(\Gamma_0\) is defined as \(\Gamma_0[0]=0\) and \(\Gamma_0[n+1]=\varphi_{\Gamma_0[n]}(0)\), and this is from this system.
The Feferman–Schütte ordinal is significant as the proof-theoretic ordinal of ATR0 (arithmetical transfinite recursion, a subsystem of second-order arithmetic). It is \(\varphi(1,0,0)\) using the extended finitary Veblen function, \(\psi_0(\Omega^\Omega) = \psi_0(\psi_1(\psi_1(\psi_1(0))))\) using Buchholz's psi function, \(\theta(\Omega,0)\) using Feferman's theta function, and \(\vartheta(\Omega^2)\) using Weiermann's theta function.
Appearances in googology[]
Using the Veblen hierarchy:
- Fast-growing hierarchy: \(f_{\Gamma_0}(n)\) represents the pentational space in the climbing methods of the Extended Cascading-E Notation and BEAF, such as pentacthulhum and kungulus.
- Hardy hierarchy: \(H_{\Gamma_0}(n)\) catches up \(f_{\Gamma_0}(n)\) as \(H_{\omega^{\alpha}}(n) = f_{\alpha}(n)\) for \(\alpha < \varepsilon_0\).
- Slow-growing hierarchy: \(g_{\Gamma_0}(n) \approx f_{\omega+1}(n)\) in the FGH \(\approx \{n,n,1,2\}\) in BEAF, which has an expandal growth rate, such as Graham's number.
Sources[]
- ↑ D. Madore, A Zoo of Ordinals (p.2). Retrieved 2021-06-10.
- ↑ M. Rathjen, Proof theory: From arithmetic to set theory (p.13). Retrieved 2021-06-19.
See also[]
Basics: cardinal numbers · ordinal numbers · limit ordinals · fundamental sequence · normal form · transfinite induction · ordinal notation · Absolute infinity
Theories: Robinson arithmetic · Presburger arithmetic · Peano arithmetic · KP · second-order arithmetic · ZFC
Model Theoretic Concepts: structure · elementary embedding
Countable ordinals: \(\omega\) · \(\varepsilon_0\) · \(\zeta_0\) · \(\eta_0\) · \(\Gamma_0\) (Feferman–Schütte ordinal) · \(\varphi(1,0,0,0)\) (Ackermann ordinal) · \(\psi_0(\Omega^{\Omega^\omega})\) (small Veblen ordinal) · \(\psi_0(\Omega^{\Omega^\Omega})\) (large Veblen ordinal) · \(\psi_0(\varepsilon_{\Omega + 1}) = \psi_0(\Omega_2)\) (Bachmann-Howard ordinal) · \(\psi_0(\Omega_\omega)\) with respect to Buchholz's ψ · \(\psi_0(\varepsilon_{\Omega_\omega + 1})\) (Takeuti-Feferman-Buchholz ordinal) · \(\psi_0(\Omega_{\Omega_{\cdot_{\cdot_{\cdot}}}})\) (countable limit of Extended Buchholz's function) · \(\omega_1^\mathfrak{Ch}\) (Omega one of chess) · \(\omega_1^{\text{CK}}\) (Church-Kleene ordinal) · \(\omega_\alpha^\text{CK}\) (admissible ordinal) · recursively inaccessible ordinal · recursively Mahlo ordinal · reflecting ordinal · stable ordinal · \(\lambda,\gamma,\zeta,\Sigma\) (Infinite time Turing machine ordinals) · gap ordinal · List of countable ordinals
Ordinal hierarchies: Fast-growing hierarchy · Hardy hierarchy · Slow-growing hierarchy · Middle-growing hierarchy · N-growing hierarchy
Ordinal functions: enumeration · normal function · derivative · Veblen function · ordinal collapsing function · Weak Buchholz's function · Bachmann's function · Madore's function · Feferman's theta function · Buchholz's function · Extended Weak Buchholz's function · Extended Buchholz's function · Jäger-Buchholz function · Jäger's function · Rathjen's psi function · Rathjen's Psi function · Stegert's Psi function · Arai's psi function
Uncountable cardinals: \(\omega_1\) · omega fixed point · inaccessible cardinal \(I\) · Mahlo cardinal \(M\) · weakly compact cardinal \(K\) · indescribable cardinal · rank-into-rank cardinal
Classes: \(\textrm{Card}\) · \(\textrm{On}\) · \(V\) · \(L\) · \(\textrm{Lim}\) · \(\textrm{AP}\) · Class (set theory)