The goobolthrex is equal to \(a_{a_1}\) in the following sequence:
Let \(a_1\) = {10, 100 (1) 2} = goobol
Let \(a_2\) = {10, {10, {10, … {10, 100 (1) 2} (1) 2} (1) 2} … (1) 2} (\(a_1\) times) = gooboldex
Let \(a_3\) = {10, {10, {10, … {10, 100 (1) 2} (1) 2} (1) 2} … (1) 2} (\(a_2\) times) = gooboldudex
Continue, letting \(a_{n+1}\) = {10, {10, {10, … {10, 100 (1) 2} (1) 2} (1) 2} … (1) 2} (\(a_n\) times)
Goobolthrex = \(a_{a_1}\)
The term was coined by HaydenTheGoogologist2009.[1]
Approximations[]
Notation | Approximation |
---|---|
Bowers' Exploding Array Function | \(\lbrace10,\text{goobol}+1,3(1)2\rbrace\) |
Bird's array notation | \(\lbrace10,\text{goobol}+1,3[2]2\rbrace\) |
DeepLineMadom's Array Notation | 10[3{2}2]goobol + 1 |
Cascading-E notation | \(E100\#\text{^}\#100\#100\#(2+E100\#\text{^}\#99)\) |
Strong array notation | s(10, goobol + 1, 3 {2} 2) |
Fast-growing hierarchy | \(f_{\omega^{\omega}+2}^{f_{\omega^{\omega}}(100)}(100)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega}}+2}^{H_{\omega^{\omega^{\omega}}}(100)}(100)\) |
Sources[]
- ↑ Hayden's Big Numbers - Goobol series. Retrieved 2022-09-17.