The goobolzettaplex is equal to {10, {10, {10, … {10, 100 (1) 2} (1) 2} (1) 2} … (1) 2} (1021 + 1 times). The term was coined by HaydenTheGoogologist2009.[1]
Approximations[]
Notation | Approximation |
---|---|
Bowers' Exploding Array Function | \(\lbrace10,\lbrace10,21\rbrace+2,2(1)2\rbrace\) |
Bird's array notation | \(\lbrace10,\lbrace10,21\rbrace+2,2[2]2\rbrace\) |
DeepLineMadom's Array Notation | 10[2{2}2]((10[3]21) + 2) |
Cascading-E notation | \(E100\#\text{^}\#100\#(1+E21)\) |
Hyperfactorial array notation | \(100![10^{21}+1,1,1,2]\) |
Strong array notation | s(10, s(10, 21) + 2, 2 {2} 2) |
Fast-growing hierarchy | \(f_{\omega^{\omega}}^{10^{21}+1}(100)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega}}10^{21}+1}(100)\) |
Sources[]
- ↑ Hayden's Big Numbers - Goobol series. Retrieved 2022-09-12.