Googology Wiki
Advertisement
Googology Wiki
Not to be confused with googoci.

googocci, coined with the googo- prefix, is equal to \(402^{201}\) = g(2, 201, 402) in the Ackermann's Generalized Exponential Notation. Its full representation is: [1]

28147295335662071684707348968715361893603275083456436355005716793921363815053743376801439813947074244011885645712893331976079258558334706737239794433627710508943617387444679665658907164156918073061189367805883391473398618612161117753558078297946507102290927453816053899466563174167928586933081757146383067813124523713705911492517478823226174336999370713353528297568075664907505803773017563636716638761046830625076471490253189167011954291279330746205886455236865230330245432883444135843108275352151042851957477516409309233152

Etymology

The "201" in the exponent comes from "CCI", the Roman numeral for 201, which is a part of the name of the googolism.[1]

Approximations

Notation Lower bound Upper bound
Scientific notation \(2.814\times10^{523}\) \(2.815\times10^{523}\)
Arrow notation \(402\uparrow201\)
Steinhaus-Moser Notation 222[3] 223[3]
Copy notation 2[524] 3[524]
Taro's multivariable Ackermann function A(3,1735) A(3,1736)
Pound-Star Notation #*((309))*14 #*((310))*14
BEAF {402,201}
Hyper-E notation E[402]201
Bashicu matrix system (0)(0)(0)(0)(0)(0)(0)[12287] (0)(0)(0)(0)(0)(0)(0)[12288]
Hyperfactorial array notation 262! 263!
Fast-growing hierarchy \(f_2(1728)\) \(f_2(1729)\)
Hardy hierarchy \(H_{\omega^2}(1728)\) \(H_{\omega^2}(1729)\)
Slow-growing hierarchy \(g_{\omega^{201}}(402)\)

Sources

  1. 1.0 1.1 Googology Retrieved 2021-06-30.

See also

Advertisement