Goplexulus is equal to \(\{10,100 (\underbrace{0,0,\ldots ,0,0,}_{100 \text{ zeroes}}1) 2\}\) or {10,100 ((1)1) 2} in BEAF, or 100100100 & 10 using the array of operator.[1] The term was coined by Jonathan Bowers.
Approximations
Notation | Approximation |
---|---|
Bird's array notation | \(\{10,100 [1 [2] 2] 2\}\) |
Cascading-E notation | \(\textrm{E}100\#\text{^}\#\text{^}\#\text{^}\#100\) |
Hyperfactorial Array Notation | \(100![1,[1,[1,1,99],1,2],1,3]\) |
X-Sequence Hyper-Exponential Notation | \(10\{X^{X^{X^X}}\}100\) |
Fast-growing hierarchy | \(f_{\omega^{\omega^{\omega^\omega}}}(100)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega^{\omega^\omega}}}}(100)\) |
Slow-growing hierarchy | \(g_{\vartheta(\Omega^{\Omega^{\Omega^\omega}})}(100)\) |
Sources
- ↑ Bowers, Jonathan. Infinity Scrapers. Retrieved January 2013.
See also
Gongulus group: gongulus(plex/duplex/triplex/quadraplex) · gingulus · gangulus · geengulus · gowngulus · gungulus
Bongulus group: bongulus · bingulus · bangulus · beengulus
Trongulus group: trongulus · quadrongulus · goplexulus · goduplexulus · gotriplexulus
Tiaokhiao's extensions: second gongulus · gagulus · gyngulus · bowngulus · · bongulusplex · bungulus · bagulus · byngulus · treengulus · trowngulus · trungulus · tragulus · tryngulus · quintongulus · sextongulus · septongulus · octongulus · giplexulus · goquadruplexulus · goquintiplexulus