Grand Gigaenormatrixul is equal to (((...(((200![200(2)200(2)200(2)200])![200(2)200(2)200(2)200])...))) (with Gigaenormatrixul parentheses), using Hyperfactorial array notation. The term was coined by Lawrence Hollom.

### Etymology

The name of this number is based on the word "grand" and the number "Gigaenormatrixul".

### Approximations

Notation Approximation
Bird's array notation $$\{200,\{200,5,201[1[1\neg4]200[1\neg4]200[1\neg4]200]2\} \\ ,201[1[1\neg4]200[1\neg4]200[1\neg4]200]2\}$$
Hierarchical Hyper-Nested Array Notation $$\{200,\{200,5,201[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200]2\} \\ ,201[1[1/3\sim2]200[1/3\sim2]200[1/3\sim2]200]2\}$$
BEAF $$\{200,\{200,5,201(\{X,\{X,\{X,199X,1,1,4\} \\ +199X,1,1,3\}+199X,1,1,2\})2\},201(\{X,\{X, \\ \{X,199X,1,1,4\}+199X,1,1,3\}+199X,1,1,2\})2\}$$
Fast-growing hierarchy (using this system of FSes) $$f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,198)+199)+199)+200} \\ (f_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,198)+199)+199)+199}^4(200))$$
Hardy hierarchy $$H_{\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,198)+199)+199)\times(\omega^{200}+\omega^{199}4)}(200)$$
Slow-growing hierarchy $$g_{\theta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\Omega+199)+199)+199)+200,} \\ _{\vartheta(\varphi(1,0,0,\varphi(2,0,0,\varphi(3,0,0,\Omega+199)+199)+199)+200))}(4)$$

### Sources

1. Lawrence Hollom's large numbers site
2. Using particular notation $$\{a,b (A) 2\} = A \&\ a$$ with prime b.