Grand godtothol is equal to E100#^#^#^#100#2 using Cascading-E Notation.[1] The term was coined by Sbiis Saibian. This number belongs to the godtothol regiment.
Approximations in other notations[]
Notation | Approximation |
---|---|
BEAF | \(\{100,\textrm{godtothol} ((1) 1) 2\}\) \(\approx \{100,3,2 ((1) 1) 2\}\) |
Bird's array notation | \(\{100,\textrm{godtothol} [1 [2] 2] 2\}\) \(\approx \{100,3,2 [1 [2] 2] 2\}\) |
Hyperfactorial array notation | \(100![1,[1,[1,1,\textrm{godtothol}],1,2],1,3]\) |
Fast-growing hierarchy | \(f_{\omega^{\omega^{\omega^\omega}}}^2(100)\) |
Hardy hierarchy | \(H_{\omega^{\omega^{\omega^{\omega^\omega}}} 2}(100)\) |
Slow-growing hierarchy | \(g_{\vartheta(\Omega^{\Omega^{\Omega^{\vartheta(\Omega^{\Omega^{\Omega^\omega}})}}})}(101)\) |
Sources[]
- ↑ Saibian, Sbiis. 4.3.5 Cascading-E Numbers. One to Infinity. Retrieved 2016-09-09.