The grand tethratope is equal to E100#^^#^#100#2 = E100#^^###...(tethratope #'s)...####100 in Extended Cascading-E Notation.[1] The term was coined by Sbiis Saibian.
Etymology[]
The name of this number is based on the prefix "grand" and the number "tethratope".
Approximations in other notations[]
Notation | Approximation |
---|---|
BEAF | \(\{100,3,2 (\{X,X,X\}) 2\}\) (weak bound)
\(\{100,3,2 (X \uparrow \uparrow X \uparrow X) 2\}\) (strong bound)[2] |
Fast-growing hierarchy | \(f_{\varphi(\omega,0)}(f_{\varphi({100},0)}(99))\) |
Hardy hierarchy | \(H_{\varphi(\omega,0)*2}(100)\) |
Sources[]
- ↑ Saibian, Sbiis. 4.3.9 - Extended Cascading-E Numbers Part III. Retrieved 2017-01-10.
- ↑ Using particular notation \(\{a,b (X \uparrow\uparrow X) 2\}\) for \(X \uparrow\uparrow b\ \&\ a\).